首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
双向卫星时间比对是一种高精度的远程时间比对手段,其比对经常不是连续进行的。为分析非连续双向卫星时间比对的水平,使用中国科学院国家授时中心的C波段双向卫星时间比对网的数据进行试验。采用的方法是对非连续双向卫星时间比对的结果进行内插,将内插结果与连续双向卫星时间比对的结果进行比较。结果表明本文试验条件下观测间隔时间在2.5 d以内时,非连续与连续观测结果之差的RMS值小于1 ns;观测间隔时间为0.5 d时,非连续与连续观测结果之差的RMS值小于0.5 ns。  相似文献   

2.
位于东经99°赤道上空的直播电视卫星(714MHz)是静止轨道的同步卫星,陕西天文台和北京天文台合作,同时接收卫星的电视信号,提取规定的某行同步脉冲,记录本地原子钟的秒信号与该脉冲的时刻差,并且利用Loran-C长波定时信号使两天文台的原子钟同步,对卫星比对结果作钟差修正,从而获得卫星信号至两地面站的传播时延差。初步结果表明:卫星信号至陕台、北台的时延差变化范围是60μs,用二次曲线分段拟合,标准偏差(10)在1μs左右。这结果对于卫星定位、研究静止卫星轨道的运动及初步的时刻同步是有意义的。  相似文献   

3.
基于北斗卫星导航载波相位共视(BDS CP(CV))时间传递模型,使用IGS多GNSS试验先导项目(MGEX)提供的精密轨道和钟差产品,研究分析GEO,IGSO和MEO 3种北斗在轨卫星进行时间传递的不确定度。实验结果表明:相对于双向卫星比对结果和光纤比对结果,基于IGSO载波相位时间传递结果的标准差较好,相对于双向卫星比对结果,西安—长春观测数据比对结果的标准差中IGSO较好,可以达到0.39 ns;相对于光纤比对结果,西安—临潼观测数据比对结果的标准差中IGSO较好,可以达到0.18 ns;基于GEO和IGSO的载波相位时间传递结果的稳定度比基于MEO的较好。  相似文献   

4.
利用同步卫星的电视信道进行时间服务   总被引:1,自引:1,他引:0  
中国和苏联在同步卫星的电视信道中,插入了标准时间、频率信号,以及标志时、分、秒的时间编码。本文给出利用该信号定时,在不作卫星位置改正的情况下,定时精度优于短波时号,且信号稳定。陕西天文台已研制出荧光屏卫星钟,用于卫星定时。由于卫星发射功率大,使用简易,接收机,所以荧光屏卫星钟的价格较低。  相似文献   

5.
中国科学院国家授时中心在全国范围内部署建设了卫星地面观测系统,利用该系统可以进行C波段卫星双向时间频率传递(TWSTFT);TWSTFT是目前国际上远程时间频率标准之间比对精度最高的比对手段之一,但是如何验证TWSTFT的性能,仍是目前研究的难点;为验证该系统TWSTFT的性能,设计了三站闭合方法,在3个站点间两两进行TWSTFT,根据两组比对结果推算第3组比对结果,与第3组实测结果的偏差反映了卫星双向时间传递的精度,最后用实际试验结果对卫星双向时间传递的性能进行了分析;该实验结果表明两两进行TWSTFT得到的三站闭合差数据均优于1 ns。  相似文献   

6.
CSAO多通道GPS/GLONASS接收机试运行结果   总被引:4,自引:0,他引:4  
陕西天文台(CSAO)的多通道GPS/GLONASS接收机(R100/30T)自2001年6月起处于试运行阶段,经过系统调整和反复调试,两套接收机从8月8日以来取得正常接收结果.对两套接收机作了零基线共视比对,单通道GPS的单个记录的比对精度达±1.79ns;在同一时间多通道GPS比对平均值的精度达±0.82ns.GLONASS P码单通道的单个记录比对精度达±0.82ns,多通道平均值的精度达±0.57ns.上述精度与国际上同类型接收机相比较说明,CSAO的这两套R100/30T的质量较好(噪声小).CRL和CSAO的R100/30T数据的共视比对结果说明,把多通道GPS/GLONASS接收机用于远距离时间比对(尚未进行精密星历表改正),精度可以达到±4.79ns (GPS C/A码)和±2.27ns (GLONASS P码).  相似文献   

7.
基于卫星导航双频时间传递型接收机的伪码观测量,利用国际全球卫星导航系统服务组织(International Global Navigation Satellite System (GNSS) Service, IGS)提供的高精度卫星轨道和钟差产品,实现了北斗全视法时间比对.以IGS提供的时间尺度为两个待比对站的公共参考时间,首先使用双频组合法消除电离层对伪距观测的影响,然后将对流层和地球自转效应带来的时延利用理论模型在伪码观测量中进行扣除,分别获得两个比对站时间与公共参考时间之差后,将2者再做差,便得到了北斗全视时间比对结果.以中国科学院国家授时中心(NTSC)、德国物理技术研究院(PTB)和西班牙海军天文台(ROA)所保持的国家标准时间作为比对对象,开展了长基线北斗全视时间比对试验,获得北斗全视时间传递结果,最后利用阿伦方差和时间方差两项关键性能指标以及卫星双向时间比对对其进行性能评估.结果表明:北斗全视时间比对的天稳为10-14量级,可以满足国际时间比对需求.  相似文献   

8.
讲述了同步广播卫星电视时间信号的测量方法和测量结果,获得了CCTV1、CCTV2通过同一颗卫星(亚太-1A)转播的时延差值为16333μs,测量精度在10ns以内;CCTV2、CCTV4分别经两颗卫星(亚太-1A、亚洲-Ⅱ)转播,在陕西天文台卫星地面接收站时延差值为1644.20μs,精度为50μs,并分析了影响时延差值和精度的原因。同时测量了地方电视台转播亚太-1A的CCTV信号与直接接收亚太-1A的CCTV信号的时延差值,其测量精度为0.1μs。这些结果为利用同步广播卫星的电视信号进行高精度的时间服务提供了参考依据。  相似文献   

9.
GPS时间比对数据的归化   总被引:2,自引:1,他引:1  
根据时间实验室在不同时刻接收的GPS时间比对数据,采用三次样条函数的归化方法,本文给出了UTC 0^h的本地时间尺度与BlockⅠ和BlockⅡ卫星的GPS时间差,这些归化结果与世界上一些时间中心(国际计量局(BIPM)时间部、美国海军天文台(USNO)等)的结果比较表明:当取样时间为1天时,国际时间同步的不确定度优于50ns;SA(Selective Availability)效应的影响减少到50ns以内,因此,这种方法是一种精确的有效的方法。  相似文献   

10.
利用同步卫星进行中日双向时间传递   总被引:1,自引:0,他引:1  
时间同步是高精度授时不可缺少的环节。利用同步卫星进行双向时间传递可最大限度地消除路径因素对时间同步的影响,并且可准确,适时地得到高精度的比对结果。国际计量局(BIPM)为改善世界范围内时间同步,提出了全球双向卫星时间传递(TWSTT)计划。由中国科学院陕西天文台(CSAO)和日本邮政省通信综合研究所(GRL)所进行的双向卫星时间传递经过一年的工作,已经得到了较好结果,进一步的分析正在进行中。  相似文献   

11.
利用同步的三个地面站,同时接收荧光屏卫星(714MHz)的信号,由卫星信号至各地面站的传播时延差,计算出卫星的位置,定位精度在0.1以内。国内任何接收点,接收卫星信号并作卫星位置的时延修正,则与陕西天文台时刻同步误差小于5μs(1σ)。  相似文献   

12.
荧光屏电视广播卫星的初步定位及卫星时刻同步   总被引:2,自引:0,他引:2  
利用三个地面站同时接收卫星电视信号,分离出Line—319同步脉冲,并记录本地钟与分离脉冲的时刻差。在三个地面站时钟同步的情况下,可得卫星信号至各地面站的传播时延差;在假定地心距为常数的情况下,解算出卫星的位置。确定卫星经纬度,国内任何可接收卫星信号的地方,通过卫星与陕西天文台标准时刻同步的均方误差小于±3.5μs  相似文献   

13.
星地无线电双向时间比对模型及试验分析   总被引:3,自引:0,他引:3  
星地时间同步是卫星导航系统的一个关键技术,是实现卫星导航定位的基础.针对星地时间同步问题,讨论了一种星地无线电双向时间比对方法,详细推导了该方法中星地上下行伪距的归算模型,给出了星地钟差的实用计算模型.该方法通过上下行伪距求差.消除了对流层延迟,卫星星历误差和地面站站址坐标误差等共有误差影响,与信号频率有关的电离层延迟也被很大程度地削弱,从而大大提高了时间比对精度.最后,利用实测数据进行了试验分析,结果表明:星地无线电双向时间比对精度能够达到约0.34ns,验证了理论方法和模型的正确性.  相似文献   

14.
关于 LF 电磁波传播时延实测值与计算值不一致性的问题,日本 Shigetaka Hjima 先生从收、发两地坐标改正和分析 LF 定时接收机天线时延的角度作过论述,本文试图从授时控制 LF 定时及接收机设备时延两个方面进行探讨。根据1978~1981年三次搬钟实验结果,上海天文台、陕西天文台利用“交响乐”卫星和巴黎天文台进行时间比对的结果(1979年6月18日~27日)以及 Shigetaka Hjima 先生在《日本的时间与频率》一文中所公布的搬钟实验资料。分析这几次实验所反映的 LF 地波传播时延实测值与理论计算值的一致性(偏差小于1μs)与不一致性(偏差大于1μs)的情况和其中的原因,认为这种不一致性的主要原因是由于 LF 时号的发射天线电流相位超前于主钟秒詹号。本文讨论了 LF 定时接收机时延采用值和实测值问题,及其对授时台控制和时间同步准确度的影响.强调了正确测定 LF 定时接收机系统时延值的重要性。  相似文献   

15.
学术活动     
《第一届张衡学术讨论会》于1990年8月23—29日在陕西临潼陕西天文台举行。这是一次我国(非太阳)天体物理学的联合学术讨论会,内容有:(1)近年来天体物理学的进展与展望评述报告会;(2)全国第七次脉冲星与活动天体讨论会;(3)全国第三次双星讨论会;(4)全国星系和宇宙学学术讨论会;(5)全国第一次空间天文学术讨论会。 这次会议的会务工作由陕西天文台承办,学术组织工作由南京大学天文系负责。  相似文献   

16.
说明     
中国科学院陕西天文台承担国家的授时任务,保持着我国高精度的原子时基准。负责目前由陕西天文台(CSAO)、上海天文台(SO)、北京天文台(BAO)、测量与地球物理研究所武昌时辰站(WTO)和北京无线电计量测试研究所(BIRM)共同组成的我国综合原子时TA(JATC)的归算工作,通过专用长、短波授时台发播我国的标准时间与标准频率信号,并通过本刊向用户提供广泛的授时业务信息. 表A、B、C分别给出了我国BPL长波授时台时间信号、BPM短波授时台的UTC(记为BPM_c)和UT_1(记为BPM_1)时号、中央电视台在我国广播卫星转发的电视信号中插入的时间信号,以及美国罗兰C西北太平洋链导航信号中标志时间的信号、美国导航星全球定位系统(GPS)的时间信号  相似文献   

17.
说明     
中国科学院陕西天文台承担国家的授时任务,保持着我国高精度的原子时基准,负责目前由陕西天文台(CSAO)、上海天文台(SO)、北京天文台(BAO)、测量与地球物理研究所武昌时辰站(WTO)和北京无线电计量测试研究所(BIRM)共同组成的我国综合原子时TA(JATE)的归算工作,通过专用长、短波授时台发播我国的标准时间与标准频率信号,并通过本刊向用户提供广泛的授时业务信息。表A、B、C分别给出了我国BPL长波授时台时间信号、BPM短波授时台的UTC(记为BPM_c)和UT_1(记为BPM_1)时号、中央电视台在我国广播卫星转发的电视信号中插入的时间信号,以及美  相似文献   

18.
说明     
中国科学院陕西天文台承担国家的授时任务,保持着我国高精度的原子时基准,负责目前由陕西天文台(CSAO)、上海天文台(SO)、北京天文台(BAO)、测量与地球物理研究所武昌时辰站(WTO)和北京无线电计量测试研究所(BIRM)共同组成的我国综合原子时 TA(JATC)的归算工作,通过专用长、短波授时台发播我国的标准时间与标准频率信号,并通过本刊向用户提供广泛的授时业务信息。表 A、B、C 分别给出了我国 BPL 长波授时台时间信号、BPM 短波授时台的 UTC(记为 BPM_c)和 UT_1(记为 BPM_1)时号、中央电视台在我国广播卫星转发的电视信号中插入的时间信号,以及美  相似文献   

19.
说明     
中国科学院陕西天文台承担国家的授时任务,保持着我国高精度的原子时基准。负责目前由陕西天文台(CSAO)、上海天文台(SO)、北京天文台(BAO)、测量与地球物理研究所武昌时辰站(WTO)和北京无线电计量测试研究所(BIRM)共同组成的我国综合原子时TA(JATC)的归算工作,通过专用长、短波授时台发播我国的标准时间与标准频率信号,并通过本刊向用户提供广泛的授时业务信息。表A、B、C分别给出了我国BPL长波授时台时间信号、BPM短波授时台的UTC(记为BPM_c)和UT_1(记为BPM_1)时号、中央电视台在我国广播卫星转发的电视信号中插入的时间信号,以及美  相似文献   

20.
说明     
中国科学院陕西天文台承担国家的授时任务,保持着我国高精度的原子时基准,负责目前由陕西天文台(CSAO)、上海天文台(SO)、北京天文台(BAO)、测量与地球物理研究所武昌时辰站(WTO)和北京无线电计量测试研究所(BIRM)共同组成的我国综合原子时TA(JATC)的归算工作,通过专用长、短波授时台发播我国的标准时间与标准频率信号,并通过本刊向用户提供广泛的授时业务信息。表A、B、C分别给出了我国BPL长波授时台时间信号、BPM短波授时台的UTC(记为BPM_c)和UT_1(记为BPM_1)时号、中央电视台在我国广播卫星转发的电视信号中插入的时间信号,以及美  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号