首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The temperatures of prolate and oblate spheroidal dust grains in the envelopes of stars of various spectral types are calculated. Homogeneous particles with aspect ratios a/b≤10 composed of amorphous carbon, iron, dirty ice, various silicates, and other materials are considered. The temperatures of spherical and spheroidal particles were found to vary similarly with particle size, distance to the star, and stellar temperature. The temperature ratio T d(spheroid)/T d(sphere) depends most strongly on the grain chemical composition and shape. Spheroidal grains are generally colder than spherical particles of the same volume; only iron spheroids can be slightly hotter than iron spheres. At a/b≈2, the temperature differences do not exceed 10%. If a/b≥4, the temperatures can differ by 30–40%. For a fixed dust mass in the medium, the fluxes at wavelengths λ≥100 are higher if the grains are nonspherical, which gives overestimated dust masses from millimeter observations. The effect of grain shape should also be taken into account when modeling Galactic-dust emission properties, which are calculated when searching for fluctuations of the cosmic microwave background radiation in its Wien wing.  相似文献   

2.
The Rosseland mean opacity was determined for an ensemble of dust grain species though to have been present in the early solar nebula, as well as in the primordial nebulae that helped to form the outer planets. In performing these calculations, we have derived and used more general equation for the Rosseland opacity that allows for anisotropic scattering. The identity of the major particle species and their relative abundances were found from thermodynamic equilibrium and solar elemental abundances. The optical constants of these materials were defined at wavelengths ranging from near-UV to the radio domain. Calculations were performed for a very wide range of particle size distributions, including a nominal one based on that of interstellar dust grains. In addition, asymptotic expressions for the Rosseland opacity are derived in the limits of very small and very large sized particles. Results are presented for nebular temperatures varying from 10 to 2500°K and for nebular gas densities varying from 10?14 to 1 g/cm3. The values of the Rosseland mean opacity do not depend sensitively on the choice of the particle size distribution function, provided that there are few particles having sizes in excess of several tens of microns. At low temperatures that lie within the stability field of condensed water (?200°K), this opacity varies approximately as the square of the temperature for the nominal size distribution and for all distributions having few particles larger than several tens of microns. However, the Rosseland opacity has a much weaker temperature dependence at higher temperatures for this class of size distributions and at all temperatures for size distributions containing numerous particles larger than several tens of microns. As a result, thermal convection in primordial nebulae occurs over broader ranges of altitudes at low temperatures and for size distributions for which extensive aggregation has not yet occurred.  相似文献   

3.
We present results of FIB–TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km s?1 with a light‐gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less‐refractory Si3N4 grains. In small (<2 μm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 μm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation. The low presolar grain abundance estimates derived from SIMS measurements of large craters (mostly >50 μm) likely result from greater modification of these impactors (i.e., melting and isotopic dilution), due to higher peak temperatures/pressures in these crater impacts. The better survivability of grains in smaller craters suggests that more accurate presolar grain estimates may be achievable through measurement of such craters. It also suggests small craters can provide a complementary method of study of the Wild 2 fine fraction, especially for refractory CAI‐like minerals.  相似文献   

4.
This paper synthesizes information on the size distribution and physical properties of interplanetary dust grains obtained from analyses of lunar microcraters performed until 1979. The different aspects of these analyses (counting methods, simulation, calibrations) are summarized and a large amount of data is collected and discussed in order to clarify past contradictions. The number of small microcraters (Dc < 5 μm) is found to be higher than previously derived and the ratio P/Dc (depth to crater diameter) to depend upon their sizes. All results converge to a two-component dust population: Population 1 consists principally of large grains (d > 2 μm) with density typical of silicates while Population 2 consists of small grains (d < 2 μm) with higher density typical of iron, with a minor component of silicates. The conclusion appears to be further supported by spatial measurements and collection experiments. Fluffy grains of very low density (0.3 g/cm3) are probably not present to a large extent.  相似文献   

5.
The particles making up the Jovian ring may be debris which has been excavated by micrometeoroids from the surfaces of many unseen (R ? 1 km) parent bodies (or “mooms” as we will occasionally call them) residing in the ring. A distribution of particle sizes exists: large objects are sources for the small visible ring particles and also account for the absorption of charged particles noted by Pioneer; the small grains are generated by micrometeoroid impacts, by jostling collisions among different-sized particles, and by self-fracturing due to electrostatic stresses. The latter are most effective in removing surface asperities to thereby produce smooth and crudely equidimensional grains. The presence of intermediate-sized (radius of several to several hundred microns) objects is also expected; these particles will have a total area comparable to the area of the visible ring particles. The nominal size (?2 μm) of the visible particles derived from their forward-scattering characteristics is caused, at least in part, by a selection effect but may also reflect a fundamental grain size or the preferential generation of certain sizes along with the destruction of others. The tiny ring particles have short lifetimes (?102?103 years) limited by erosion due to sputtering and meteoroid impacts. Plasma drag significantly modifies orbits in ~102 years but Poynting-Robertson drag is not effective (TPR ~ 105 years) in removing debris. The ring width is influenced by the distribution of source satellites, by the initial ejection velocity off them, by electromagnetic scattering, and by solar radiation forces. In the absence of electromagnetic forces, debris will reimpact a mother satellite or collide with another particle in about 10 years. A relative drift between different-sized particles, caused by a lessened effective gravity due to the Lorentz force, will substantially shorten these times to less than a month. The ring thickness is determined by a balance between initial conditions (abetted perhaps by electromagnetic scattering) and collisional damping; existence of the “halo” over the diffuse disk compared to its relative absence over the bright ring indicates the presence of mooms in the bright ring but not in the faint disk. Small satellites (R ? 1 km) will not reaccumulate colliding dust grains whereas satellites having the size of J14 or J16 may be able to do so, depending upon their precise shape, size, density, and location. Visible ring structure could indicate separate source satellites. The particles in the faint inner disk are delivered from the bright ring by orbital evolution principally under plasma drag. The halo is comprised of small particles (~0.1 μm) partially drawn out of the faint disk by interactions with the tilted Jovian magnetic field.  相似文献   

6.
Abstract– We report on the microstructure, crystallography, chemistry, and isotopic compositions of seven SiC X grains and two mainstream grains from the Murchison meteorite. TEM crystallographic analysis revealed that the X grains (approximately 3 μm) are composed of many small crystals (24–457 nm), while the similarly sized mainstream grains are composed of only a few crystals (0.5–1.7 μm). The difference in crystal size likely results from differences in their formation environments: the X grain crystals evidently formed under conditions of greater supersaturation and rapid growth compared to their mainstream counterparts. However, the same polytypes are observed in both mainstream and X grains. Six X grains and both mainstream grains are entirely the 3C‐SiC polytype and one X grain is an intergrowth of the 3C‐SiC and 2H‐SiC polytypes. EDXS measurements indicate relatively high Mg content in the X grains (≲5 atomic%), while Mg was undetectable in the mainstream grains. The high Mg content is probably from the decay of 26Al into 26Mg. Estimates of the 26Al/27Al ratios, which range from 0.44–0.67, were made from elemental Mg/Al ratios. This range is consistent with the 26Al/27Al ratios inferred from previous isotopic measurements of X grains. We also report the first direct observations of subgrains in X grains, including the first silicides [(Fe,Ni)nSim]. Diffraction data do not match any previously observed presolar phases, but are a good fit to silicides, which are predicted stable SN condensates. Eight subgrains with highly variable Ni/Fe ratios (0.12–1.60) were observed in two X grains.  相似文献   

7.
We present near infrared maps of the planetary nebula IC 418 taken at 5 arc sec spatial resolution. These show an extremely compact source structure at 1.65 m, and very much broader and more elliptical emission distributions at 2.2 and 3.6 m. The possibility that the near infrared continuum derives from small grains with low thermal capacity is discussed, and synthetic spectra are derived. These indicate a very much slower variation of flux with wavelength than would be deduced for grains at unitary temperature, and imply a near infrared continuum which is significantly cooler than maximum grain temperatures. Fits to the spectrum of IC 418 suggest that peak grain temperatures may approachT p0103 K (for –2), for instance, compared to the observed colour temperature of 650 K.Finally, the relevant grains are required to be refractory and, given the large C/O ratio in this nebula, probably consist of graphite. Their mass is also required to be small, and is probably of order 2×10–7 M . This compares with the probable total mass for large dust grains of 10–4 M . Although they are both small and warm, such grains would be expected to persist over the lifetime of the nebula, and may also be responsible for various NIR band emission features.  相似文献   

8.
Abstract— The lunar soil characterization consortium, a group of lunar‐sample and remote‐sensing scientists, has undertaken the extensive task of characterization of the finest fractions of lunar soils, with respect to their mineralogical and chemical makeup. These compositional data form the basis for integration and modeling with the reflectance spectra of these same soil fractions. This endeavor is aimed at deciphering the effects of space weathering of soils on airless bodies with quantification of the links between remotely sensed reflectance spectra and composition. A beneficial byproduct is an understanding of the complexities involved in the formation of lunar soil. Several significant findings have been documented in the study of the <45 μm size fractions of selected Apollo 17 mare soils. As grain size decreases, the abundance of agglutinitic glass increases, as does the plagioclase, whereas the other minerals decrease. The composition of the agglutinitic glass is relatively constant for all size fractions, being more feldspathic than any of the bulk compositions; notably, TiO2 is substantially depleted in the agglutinitic glass. However, as grain size decreases, the bulk composition of each size fraction continuously changes, becoming more Al‐rich and Fe‐poor, and approaches the composition of the agglutinitic glasses. Between the smallest grain sizes (10–20 and < 10 μm), the IS/FeO values (amount of total iron present as nanophase Fe0) increase by greater than 100% (>2x), whereas the abundance of agglutinitic glass increases by only 10–15%. This is evidence for a large contribution from surface‐correlated nanophase Fe0 to the IS/FeO values, particularly in the <10 μm size fraction. The surface nanophase Fe0 is present largely as vapor‐deposited patinas on the surfaces of almost every particle of the mature soils, and to a lesser degree for the immature soils (Keller et al., 1999a). It is reasoned that the vapor‐deposited patinas may have far greater effects upon reflectance spectra of mare soils than the agglutinitic Fe0.  相似文献   

9.
We report the B abundances and isotopic ratios of two olivine grains from the S‐type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic‐ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic‐ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.  相似文献   

10.
Abstract— We report isotopic abundances for C, N, Mg‐Al, Si, Ca‐Ti, and Fe in 99 presolar silicon carbide (SiC) grains of type X (84 grains from this work and 15 grains from previous studies) from the Murchison CM2 meteorite, ranging in size from 0.5 to 1.5 μm. Carbon was measured in 41 X grains, n in 37 grains, Mg‐Al in 18 grains, Si in 87 grains, Ca‐Ti in 25 grains, and Fe in 8 grains. These X grains have 12C/13C ratios between 18 and 6800, 14N/15n ratios from 13 to 200, δ29Si/28Si between ?750 and +60%0, δ30Si/28Si from ?770 to ?10%0, and 54Fe/56Fe ratios that are compatible with solar within the analytical uncertainties of several tens of percent. Many X grains carry large amounts of radiogenic 26Mg (from the radioactive decay of 26Al, half‐life ? 7 times 105 years) and radiogenic 44Ca (from the radioactive decay of 44Ti, half‐life = 60 years). While all X grains but one have radiogenic 26Mg, only ~20% of them have detectable amounts of radiogenic 44Ca. Initial 26Al/27Al ratios of up to 0.36 and initial 44Ti/48Ti ratios of up to 0.56 can be inferred. The isotopic data are compared with those expected from the potential stellar sources of SiC dust. Carbon stars, Wolf‐Rayet stars, and novae are ruled out as stellar sources of the X grains. The isotopic compositions of C and Fe and abundances of extinct 44Ti are well explained both by type Ia and type II supernova (SN) models. The same holds for 26Al/27Al ratios, except for the highest 26Al/27Al ratios of >0.2 in some X grains. Silicon agrees qualitatively with SN model predictions, but the observed 29Si/30Si ratios in the X grains are in most cases too high, pointing to deficiencies in the current understanding of the production of Si in SN environments. The measured 14n/15n ratios are lower than those expected from SN mixing models. This problem can be overcome in a 15 Modot; type II SN if rotational mixing, preferential trapping of N, or both from 15n‐rich regions in the ejecta are considered. The isotopic characteristics of C, N, Si, and initial 26Al/27Al ratios in small X grains are remarkably similar to those of large X grains (2–10 μm). Titanium‐44 concentrations are generally much higher in smaller grains, indicative of the presence of Ti‐bearing subgrains that might have served as condensation nuclei for SiC. The fraction of X grains among presolar SiC is largely independent of grain size. This implies similar grain‐size distributions for SiC from carbon stars (mainstream grains) and supernovae (X grains), a surprising conclusion in view of the different conditions for dust formation in these two types of stellar sources.  相似文献   

11.
We have calculated the desorption rates of both physisorbed and chemisorbed ions from grain surfaces, due to the temperature increase at densities higher than 10–13 g cm–3. It has been found that physisorbed ions desorb from grain surfaces at neutral densities ofn>1.3×1011 cm–3, assuming that the desorption energyD is equal to 0.1 eV, while the desorption of chemisorbed ions from grain surface can only occur at neutral densities ofn>1015 cm–3, at which point thermal ionization becomes more dominant.The electrons are assumed to be emitted from grain surfaces in a manner similar to the thermonic emission from heated solid surfaces. It was found that the temperature at which electrons are emitted from negatively charged grains depends on the value of the work function of the material of the grain.The charge state has been calculated for two limiting cases. Neglecting the grain surface reactions in case 1, the resulting relative charge density represents an upper limit, such that the electrical conductivity remains high. In this situation the magnetic flux dissipation is mainly contributed by ambipolar diffusion. In the second case, it has been assumed that the charged particles are chemically adsorbed on grain surfaces such that their desorption is negligible. In this case the charge density decreases sharply with increase of neutral density. Therefore, the electrical conductivity decreases sufficiently and Ohmic dissipation becomes effective.  相似文献   

12.
The formation of molecular hydrogen  (H2)  in the interstellar medium takes place on the surfaces of dust grains. Hydrogen molecules play a role in gas-phase reactions that produce other molecules, some of which serve as coolants during gravitational collapse and star formation. Thus, the evaluation of the production rate of hydrogen molecules and its dependence on the physical conditions in the cloud are of great importance. Interstellar dust grains exhibit a broad size distribution in which the small grains capture most of the surface area. Recent studies have shown that the production efficiency strongly depends on the grain composition and temperature as well as on its size. In this paper, we present a formula that provides the total production rate of  H2  per unit volume in the cloud, taking into account the grain composition and temperature as well as the grain size distribution. The formula agrees very well with the master equation results. It shows that for a physically relevant range of grain temperatures, the production rate of  H2  is significantly enhanced due to their broad size distribution.  相似文献   

13.
Abstract— A new mineral named galileiite, NaFe4(PO4)3, has been found within troilite nodules in iron meteorites of the IIIA and IIIB groups. the mineral is optically positive (ω = 1.72, ω = 1.75), colorless in transmitted light and pale amber in reflected light. Grains of galileiite are very small, generally 10 μm or less; rarely, grains are up to 30 μm. It is associated with Ca-free graftonite (or Ca-free sarcopside), chromite and, occasionally, schreibersite. Johnsomervilleite may occur within troilite nodules in the same meteorite as galileiite, but they have never been observed together in the same troilite nodule. Because of the small sample size, single crystal x-ray work was not successful; however, Gandolfi diffraction measurements were made. The three strongest diffraction peaks are 2.71 Å, 3.01 Å and 4.13 Å. On the basis of its composition and similar diffraction pattern, it is considered to be related to johnsomervilleite, fillowite and chladniite, all of which are rhombohedral and isostructural. Galileiite may also be rhombohedral, but that is yet to be demonstrated.  相似文献   

14.
Abstract— Among the calcium‐aluminum‐rich inclusions (CAIs), excess 41K (41K*), which was produced by the decay of the short‐lived radionuclide 41Ca (t1/2 = 0.1 Myr), has so far been detected in fassaite and in two grains of melilites. These observations could be used to provide important constraints on the thermal history and size of the planetesimals into which the CAIs were incorporated, provided the diffusion kinetic properties of K in these minerals are known. Thus, we have experimentally determined K diffusion kinetics in the melilite end‐members, åkermanite and gehlenite, as a function of temperature (900–1200 °C) and crystallographic orientation at 1 bar pressure. The closure temperature of K diffusion in melilite, Tc(K:mel), for the observed grain size of melilite in the CAIs and cooling rate of 10–100 °C/Myr, as calculated from our diffusion data, is much higher than that of Mg in anorthite. The latter was calculated from the available Mg diffusion data in anorthite. Assuming that the planetesimals were heated by the decay of 26Al and 60Fe, we have calculated the size of a planetesimal as a function of the accretion time tf such that the peak temperature at a specified radial distance rc equals Tc(K:mel). The ratio (rc/R)3 defines the planetesimal volume fraction within which 41K* in melilite grains would be at least partly disturbed, if these were randomly distributed within a planetesimal. A similar calculation was also carried out to define R versus tf relation such that 26Mg* was lost from ?50% of randomly distributed anorthite grains, as seems to be suggested by the observational data. These calculations suggest that ?60% of melilite grains should retain 41K* if ?50% of anorthite grains had retained 26Mg*. Assuming that tf was not smaller than the time of chondrule formation, our calculations yield minimum planetesimal radius of ?20–30 km, depending on the choice of planetesimal surface temperature and initial abundance of the heat producing isotope 60Fe.  相似文献   

15.
The interaction of dust grains with each other in a finite-temperature solar nebula are examined, taking into account the important fact that such grains would carry net steady-state charges like those of grains in interstellar clouds. This charge is given by the well-known Spitzer relation. It provides a screening mechanism that operates during accretion and results in bodies of differing compositions depending on the local temperature in the nebula. In a typical nebula, it is found that planetesimals of 0.1–102-cm size form in a time of order 106–107 years. These planetesimals are of iron and stone and mixed composition in the inner solar system, but of mixed composition only in the outer solar system. The predictions of this type of charged-dust accretion can be compared to known data on meteorites and the composition of the planets.  相似文献   

16.
An understanding of the rates of frost grain growth is essential to the goal of relating spectral data on surface mineralogy to the physical history of a planetary surface. Models of grain growth kinetics have been constructed for various frosts based on their individual thermodynamic properties and on the difference in binding energy between molecules on plane vs curved faces. A steady state situation can occur on planetary surfaces in which thermal elimination of small grains competes with their creation, usually by meteorite impact. We utilize predicted grain growth rates to explain telescopic spectral data on condensate surfaces throughout the solar system. On Pluto, predicted CH4 ice grain growth rates are very high despite the low temperature, resulting in a multicentimeter optical path. This explains the strong CH4 absorption band depths, which otherwise would require large amounts of CH4 gas. On the Uranian and Saturnian satellites, extremely slow grain growth rates are predicted because of the low vapor pressure of H2O at the existing average surface temperatures. This may explain evidence for fine grain size and peculiar microstructure. On Io, ordinary thermal exchange is more effective than sputtering in promoting grain growth because of the properties of SO2. Over much of Io's disk, submicron size grains of SO2 could plausibly reconfigure into a surface glaze on a timescale comparable to the resurfacing rate. This may explain the relatively strong SO2 signature in Io's infrared absorption spectrum as opposed to its weaker manifestation in the visible spectrum. In spite of lower sputtering fluxes, sputtering plays a more important role in grain growth for Europa, Ganymede, and Callisto than on Io. This is a result of high rates of thermally activated grain growth and resurfacing on Io. The sequence of H2O-ice absorption band depths (related to the mean grain size) is J2(T) ~ J3(T) > J2(L) > J3(L) ~ J4(T) ~ J4(L), where L = leading and T = trailing. This is to be expected if sputtering were dominant. The calculations show, however, that neither thermalized exchange fluxes nor sputtering exchange fluxes can produce the implied grain growth or the ordering by ice absorption band depths of the six satellite hemispheres. Only sputtering control by simple ejection of H2O from the satellites, as the dominant cause of shorter mean lifetimes for smaller exposed grains, can satisfactorily explain the data. Some observations, which suggest that there are vertical grain size gradients, may result from a steady state balance between intense near surface production of fine frost by comminution, coupled with ongoing ubiquitous grain growth in the vertical column. In certain cases, e.g., Europa and Enceladus, the possibility exists that endogenic activity as well as comminution could affect grain size—at least locally. It is concluded that not only ice identification and mapping, but ice grain size mapping is an important experiment to be conducted on future missions.  相似文献   

17.
Abstract— Metal nodules are one of the major textural components of Kaidun sample #01.3.06 EH3-4. In terms of structure, the nodules are of three types: (1) globular, (2) zoned with a massive core and globular mantle, and (3) nodules with no internal structure. The size and composition of the globules in the nodules and grains of metal of the matrix are almost identical: no greater than 20 μm and Ni, 5.95; Si, 3.33 wt%. The nodules contain small (usually <5 μm) inclusions of SiO2; albitic glass; enstatite; roedderite; and a mixture of SiO2 and Na2S2. This is the first reported occurrence of a simple sulfide of an alkaline metal in nature. The formation of the inclusions appears to be related to condensation of material onto the surfaces of metal grains. The nodules appear to have formed by aggregation of separate grains (globules) of metal, with conservation of condensates on the grain surfaces as inclusions. The inclusions probably condensed over a significant temperature range from 1400 to 600 K. The aggregation of metal grains and formation of the nodules probably occurred simultaneously with condensation.  相似文献   

18.
Since gas-phase reactions alone cannot account for the observed abundances of H2 in the typical interstellar cloud, one or more surface reactions are probably involved. Of the three possible candidates, only the catalytic production of H2 on transition metal grains is supported by laboratory evidence. Using the rate equations developed in a previous paper for this process, the steady-state equilibrium abundances of H, H2,e , H+, H, H2 +, and H3 + are calculated for large (r>10 pcs;M102 M ), tenuous (n=102–104 cm–3) hydrogen dust clouds under a wide variety of conditions. In addition to the four rate equations involved in the catalytic reactions, 18 gas-phase and one additional surface reaction—the physical adsorption of H-atoms on cold, dielectric surfaces and their subsequent recombination and desorption as H2 molecules—are included in the calculations. It is found that metal grains can produce as much interstellar H2 as the best physical adsorption mechanism under optimum conditions if the extinction in the visible is less than 5m.0. The three critical parameters for efficient catalysis (activation energy of desorption, grain temperature, and the number density of available sites) are examined, and it is shown that catalytic reactions are efficient producers of H2 under all but the most unfavorable conditions.  相似文献   

19.
Abstract— Forty‐three corundum grains (1–11 μm in size) and 5 corundum‐hibonite grains with corundum overgrown by hibonite (4–7 μm in size), were found in the matrix of the mineralogically pristine, ungrouped carbonaceous chondrite Acfer 094 by using cathodoluminescence imaging. Some of the corundum and corundum‐hibonite grains occur as aggregates of 2 to 6 grains having similar sizes. The oxygen isotopic compositions of some of the corundum‐bearing grains suggest their solar nebula origin. 26Al‐26Mg systematics of one corundum grain showed the canonical initial 26Al/27Al ratio, also suggesting a solar nebula origin. Quantitative evaluation of condensation and accretion processes made based on the homogeneous nucleation of corundum, diffusion‐controlled hibonite formation, collisions of grains in the nebula, and critical velocity for sticking, indicates that, in contrast to the hibonite‐bearing aggregates of corundum grains, the hibonite‐free corundum aggregates could not have formed in the slowly cooling nebular region with solar composition. We suggest instead that such aggregates formed near the protosun, either in a region that stayed above the condensation temperature of hibonite for a long time or in a chemically fractionated, Ca‐depleted region, and were subsequently physically removed from this hot region, e.g., by disk wind.  相似文献   

20.
In this paper we analyze near-infrared thermal emission spectra of the spatially resolved nucleus of Comet 9P/Tempel 1 obtained by the NASA spacecraft Deep Impact. Maps of spectral reddening, the product X between the beaming function and directional emissivity, as well as surface temperature are constructed. Thermophysical modeling is used to estimate the degree of small scale surface roughness and thermal inertia by detailed reproduction of the empirical temperature map. Mie and Hapke theories are used in combination with numerically calculated beaming functions to analyze the X map and place constraints on composition and grain size of the surface material. We show that it is absolutely mandatory to include small scale surface roughness in thermophysical modeling of this object, since the resulting self heating is vital for reproducing the measured temperatures. A small scale self heating parameter in the range 0.6?ξ?0.75 is common, but smoother areas where 0.2?ξ?0.3 are also found. Contrary to models neglecting small scale surface roughness, we find that the thermal inertia of Comet 9P/Tempel 1 generally is high (1000-3000 J m−2 K−1 s−1/2), although it may be substantially lower (40-380 J m−2 K−1 s−1/2) in specific areas. We obtain a disk-averaged reddening of 3.5% kÅ−1, with statistically significant local variations around that value on a ±1.0% kÅ−1 level. Vast regions appear covered by small (∼0.1 μm) highly absorbing grains such as carbon or iron-rich silicates. Other regions appear dominated by somewhat larger (∼0.5 μm) and/or less absorbing grains such as troilite or magnesium-rich silicates. Surface variations in reddening, roughness, thermal inertia, composition and/or grain size are moderately to strongly correlated to the locations of morphological units on the surface. The existence of morphological units with differing physical properties may be primordial, hence reflecting a diversity in the building block cometesimals, or resulting from evolutionary processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号