首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
We present a multi-wavelength correlation study of diffuse ultraviolet radiation using GALEX observations towards the Aquila Rift. Apart from airglow and zodiacal emissions, we find a diffuse background of \(1300\mbox{--} 3700~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\) in the far-ultraviolet (FUV, 1350–1750 Å) band and \(1300\mbox{--}2800~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\) in the near-ultraviolet (NUV, 1750–2850 Å) band. The observed diffuse UV emissions are saturated with total as well as neutral hydrogen column density in the region due to high optical depth in UV (\(\tau \), 0.91–23.38). Higher values of FUV/NUV ratio in the region, greater than the threshold value of 0.6, along with the positive correlation between the ratio and FUV intensity are due to excess emission in the FUV band which is absent in the NUV band. We estimated the excess emission to be in the range \(\sim 400\mbox{--} 2700~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\), plausibly due to H2 fluorescence, ion line emissions and two-photon continuum emissions from the region in the FUV band, which also shows saturation in optically thick regions with N(H2) as well as \(\mbox{H}\alpha \) emissions. Since N(H2) and \(\mbox{H}\alpha \) emissions spread all over the region, the excess emission from the field is composite in nature and a detailed spectroscopic analysis is needed to disentangle the contribution from individual components.  相似文献   

2.
We report the discovery of gamma-ray detection from the Large Magellanic Cloud (LMC) B0443-6657 using the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. LMC B0443-6657 is a flat-spectrum radio source, possibly associated with a supernova remnant in the Large Magellanic Cloud (LMC N4). Employing the LAT data of 8 years, our results show a significant excess (\(>9.4\sigma \)) of gamma rays in the range of 0.2–100 GeV above the gamma-ray background. A power-law function is found to adequately describe the 0.2–\(100\mbox{ GeV}\)\(\gamma \)-ray spectrum, which yields a photon flux of \(3.27\pm 0.53\ \text{photon}\,\mbox{cm}^{2}\,\mbox{s}^{-1}\) with a photon index of \(2.35\pm 0.11\), corresponding to an isotropic gamma-ray luminosity of \(5.3\times 10^{40}~\mbox{erg}\,\mbox{s}^{-1}\). The hadronic model predicts a low X-ray and TeV flux while the leptonic model predicts an observable flux in these two energy bands. The follow-up observations of the LMC B0443-6657 in X-ray or TeV band would distinguish the radiation models of gamma rays from this region.  相似文献   

3.
Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of \(1~\mbox{pA}/\mbox{cm}^{2}\). Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor’s hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when \(\nu_{c}\gg \nu_{b}\), where \(\nu_{c}\) is the measurement bandwidth and \(\nu_{b} \approx 1/3~\mbox{Hz}\) is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately \(1/\nu_{c}\), and the average peak current density is a weakly increasing function that scales approximately like \(\nu_{c}^{0.1}\).  相似文献   

4.
We report the results obtained by a broad-band (0.5–500 keV) data analysis of narrow-line Seyfert 1 galaxy NGC 4748 observed with an XMM-Newton/PN, INTEGRAL/ISGRI and SWIFT/BAT telescopes. This galaxy has a soft X-ray excess that is typical for the class of narrow-line Seyfert 1. The question of the origin of soft excess in such objects is still unclear. We tested and compared two spectral models for the soft X-ray spectra based on the different physical scenarios. The first one is based on the Done and Nayakshin model of two-phase accretion disc in a vertical direction, which includes two reflection zones with different ionization levels. According to this model, we found that a highly ionized reflection has the value of ionization \(\xi \sim 3000~\mbox{erg}\,\mbox{s}^{-1}\,\mbox{cm}\) and is mostly responsible for the soft excess. This reflection becomes comparable with a low ionized one (\(\xi \sim 30~\mbox{erg}\,\mbox{s}^{-1}\,\mbox{cm}\)) in moderate X-ray range. However, this model requires also an additional component at soft energies with \(kT\sim 300\) eV. The second model is an energetically self-consistent model and assumes that a soft excess arises from optically thick thermal Comptonization of the disc emission. Combination of the UV (from XMM/Optical monitor) and X-ray data in the latter model allowed us to determine a mass of the central black hole of \(6.9\times 10^{6}M_{\odot }\) and Eddington ratio \(\log_{L/L_{Edd}}\simeq -0.57\). Also, we were not able to rule out one of competing models using only X-ray spectra of NGC 4748.  相似文献   

5.
We present new two- and four-dimensional potential energy surfaces for the KCl(\(\mbox{X}^{1} \varSigma ^{+}\))-He and KCl(\(\mbox{X}^{1} \varSigma ^{+}\))-para-H2 systems calculated with the internuclear distances of KCl and H2 frozen at their experimental minimum energy. The CCSD(T) level of theory with aug-cc-pVQZ/AQZP basis sets is used. The potential surfaces present well depths of about \(78~\mbox{cm}^{-1}\) and \(235~\mbox{cm}^{-1}\) below the dissociation limit of the above interacting systems respectively. With these potential surfaces, cross sections are obtained in the close coupling scheme and rate coefficients inferred by averaging the cross sections over a Maxwell-Boltzmann velocity distribution for temperature below 50 K. A propensity towards \(\Delta J = 1\) transitions is observed.  相似文献   

6.
A new solar imaging system was installed at Hida Observatory to observe the dynamics of flares and filament eruptions. The system (Solar Dynamics Doppler Imager; SDDI) takes full-disk solar images with a field of view of \(2520~\mbox{arcsec} \times 2520~\mbox{arcsec}\) at multiple wavelengths around the \(\mathrm{H}\alpha\) line at 6562 Å. Regular operation was started in May 2016, in which images at 73 wavelength positions spanning from \(\mathrm{H}\alpha -9~\mathring{\mathrm{A}}\) to \(\mathrm{H}\alpha +9~\mathring{\mathrm{A}}\) are obtained every 15 seconds. The large dynamic range of the line-of-sight velocity measurements (\({\pm}\,400~\mbox{km}\,\mbox{s}^{-1}\)) allows us to determine the real motions of erupting filaments in 3D space. It is expected that SDDI provides unprecedented datasets to study the relation between the kinematics of filament eruptions and coronal mass ejections (CME), and to contribute to the real-time prediction of the occurrence of CMEs that cause a significant impact on the space environment of the Earth.  相似文献   

7.
Using multiwavelength observations from the Solar Dynamics Observatory (SDO) and the Solar Terrestrial Relations Observatory (STEREO), we investigate the mechanism of two successive eruptions (F1 and F2) of a filament in active region NOAA 11444 on 27 March 2012. The filament was inverse J-shaped and lay along a quasi-circular polarity inversion line (PIL). The first part of the filament erupted at \(\sim2{:}30\) UT on 27 March 2012 (F1), the second part at around 4:20 UT on the same day (F2). A precursor or preflare brightening was observed below the filament main axis about 30 min before F1. The brightening was followed by a jet-like ejection below the filament, which triggered its eruption. Before the eruption of F2, the filament seemed to be trapped within the overlying arcade loops for almost 1.5 h before it successfully erupted. Interestingly, we observe simultaneously contraction (\(\sim12~\mbox{km}\,\mbox{s}^{-1}\)) and expansion (\(\sim20~\mbox{km}\,\mbox{s}^{-1}\)) of arcade loops in the active region before F2. Magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) show converging motion of the opposite polarities, which result in flux cancellation near the PIL. We suggest that flux cancellation at the PIL resulted in a jet-like ejection below the filament main axis, which triggered F1, similar to the tether-cutting process. F2 was triggered by removal of the overlying arcade loops via reconnection. Both filament eruptions produced high-speed (\(\sim1000~\mbox{km}\,\mbox{s}^{-1}\)) coronal mass ejections.  相似文献   

8.
We aim to probe the dynamic structure of the extended Solar neighborhood by calculating the radial metallicity gradients from orbit properties, which are obtained for axisymmetric and non-axisymmetric potential models, of red clump (RC) stars selected from the RAdial Velocity Experiment’s Fourth Data Release. Distances are obtained by assuming a single absolute magnitude value in near-infrared, i.e. \(M_{Ks}=-1.54\pm0.04\) mag, for each RC star. Stellar orbit parameters are calculated by using the potential functions: (i) for the MWPotential2014 potential, (ii) for the same potential with perturbation functions of the Galactic bar and transient spiral arms. The stellar age is calculated with a method based on Bayesian statistics. The radial metallicity gradients are evaluated based on the maximum vertical distance (\(z_{max}\)) from the Galactic plane and the planar eccentricity (\(e_{p}\)) of RC stars for both of the potential models. The largest radial metallicity gradient in the \(0< z_{max} \leq0.5\) kpc distance interval is \(-0.065\pm0.005~\mbox{dex}\,\mbox{kpc}^{-1}\) for a subsample with \(e_{p}\leq0.1\), while the lowest value is \(-0.014\pm0.006~\mbox{dex}\,\mbox{kpc}^{-1}\) for the subsample with \(e_{p}\leq0.5\). We find that at \(z_{max}>1\) kpc, the radial metallicity gradients have zero or positive values and they do not depend on \(e_{p}\) subsamples. There is a large radial metallicity gradient for thin disc, but no radial gradient found for thick disc. Moreover, the largest radial metallicity gradients are obtained where the outer Lindblad resonance region is effective. We claim that this apparent change in radial metallicity gradients in the thin disc is a result of orbital perturbation originating from the existing resonance regions.  相似文献   

9.
As a coronal mass ejection (CME) passes, the flank and wake regions are typically strongly disturbed. Various instruments, including the Large Angle and Spectroscopic Coronagraph (LASCO), the Atmospheric Imaging Assembly (AIA), and the Coronal Multi-channel Polarimeter (CoMP), observed a CME close to the east limb on 26 October 2013. A hot (\({\approx}\,10~\mbox{MK}\)) rising blob was detected on the east limb, with an initial ejection flow speed of \({\approx}\, 330~\mbox{km}\,\mbox{s}^{-1}\). The magnetic structures on both sides and in the wake of the CME were strongly distorted, showing initiation of turbulent motions with Doppler-shift oscillations enhanced from \({\approx}\, \pm 3~\mbox{km}\,\mbox{s}^{-1}\) to \({\approx}\, \pm 15~\mbox{km}\,\mbox{s}^{-1}\) and effective thermal velocities from \({\approx}\,30~\mbox{km}\,\mbox{s}^{-1}\) to \({\approx}\,60~\mbox{km}\,\mbox{s}^{-1}\), according to the CoMP observations at the Fe?xiii line. The CoMP Doppler-shift maps suggest that the turbulence behaved differently at various heights; it showed clear wave-like torsional oscillations at lower altitudes, which are interpreted as the antiphase oscillation of an alternating red/blue Doppler shift across the strands at the flank. The turbulence seems to appear differently in the channels of different temperatures. Its turnover time was \({\approx}\,1000\) seconds for the Fe 171 Å channel, while it was \({\approx}\,500\) seconds for the Fe 193 Å channel. Mainly horizontal swaying rotations were observed in the Fe 171 Å channel, while more vertical vortices were seen in the Fe 193 Å channel. The differential-emission-measure profiles in the flank and wake regions have two components that evolve differently: the cool component decreased over time, evidently indicating a drop-out of cool materials due to ejection, while the hot component increased dramatically, probably because of the heating process, which is suspected to be a result of magnetic reconnection and turbulence dissipation. These results suggest a new turbulence-heating scenario of the solar corona and solar wind.  相似文献   

10.
Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 30?–?80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called “stria” bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of \((0.1\,\mbox{--}\,0.6)c\). Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency. The striae bandwidths are in the range of \({\approx}\,(20\,\mbox{--}\,100)\) kHz and the striae drift rates vary from zero to \({\approx}\,0.3~\mbox{MHz}\,\mbox{s}^{-1}\). The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of \(\Delta n/n\sim10^{-3}\), their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of \(400\,\mbox{--}\,800~\mbox{km}\,\mbox{s}^{-1}\). These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves.  相似文献   

11.
Previous and ongoing searches for extraterrestrial optical and infrared nanosecond laser pulses and narrow line-width continuous emissions have so far returned null results. At the commonly used observation cadence of \(\sim 10^{-9}\,\hbox {s}\), sky-integrated starlight is a relevant noise source for large field-of-view surveys. This can be reduced with narrow bandwidth filters, multipixel detectors, or a shorter observation cadence. We examine the limits of short pulses set by the uncertainty principle, interstellar scattering, atmospheric scintillation, refraction, dispersion and receiver technology. We find that optimal laser pulses are time-bandwidth limited Gaussians with a duration of \(\Delta t \approx \,10^{-12}\,\hbox {s}\) at a wavelength \(\lambda _{0}\approx 1\,\upmu \hbox {m}\), and a spectral width of \(\Delta \lambda \approx 1.5\,\hbox {nm}\). Shorter pulses are too strongly affected through Earth’s atmosphere. Given certain technological advances, survey speed can be increased by three orders of magnitude when moving from ns to ps pulses. Faster (and/or parallel) signal processing would allow for an all-sky-at-once survey of lasers targeted at Earth.  相似文献   

12.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have used ring-diagram analysis to analyze Dopplergrams obtained with the Michelson Doppler Imager (MDI) Dynamics Program, the Global Oscillation Network Group (GONG), and the Helioseismic and Magnetic Imager (HMI) instrument. We combined the zonal and meridional flows from the three data sources and scaled the flows derived from MDI and GONG to match those from HMI observations. In this way, we derived their temporal variation in a consistent manner for Solar Cycles 23 and 24. We have corrected the measured flows for systematic effects that vary with disk positions. Using time-depth slices of the corrected subsurface flows, we derived the amplitudes and times of the extrema of the fast and slow zonal and meridional flows during Cycles 23 and 24 at every depth and latitude. We find an average difference between maximum and minimum amplitudes of \(8.6 \pm0.4~\mbox{m}\,\mbox{s}^{-1}\) for the zonal flows and \(7.9 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flows associated with Cycle 24 averaged over a depth range from 2 to 12 Mm. The corresponding values derived from GONG data alone are \(10.5 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the zonal and \(10.8 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flow. For Cycle 24, the flow patterns are precursors of the magnetic activity. The timing difference between the occurrence of the flow pattern and the magnetic one increases almost linearly with increasing latitude. For example, the fast zonal and meridional flow appear \(2.1 \pm 0.6\) years and \(2.5\pm 0.6\) years, respectively, before the magnetic pattern at \(30^{\circ}\) latitude in the northern hemisphere, while in the southern hemisphere, the differences are \(3.2 \pm 1.2\) years and \(2.6 \pm 0.6\) years. The flow patterns of Cycle 25 are present and have reached \(30^{\circ}\) latitude. The amplitude differences of Cycle 25 are about 22% smaller than those of Cycle 24, but are comparable to those of Cycle 23. Moreover, polynomial fits of meridional flows suggest that equatorward meridional flows (counter-cells) might exist at about \(80^{\circ}\) latitude except during the declining phase of the solar cycle.  相似文献   

13.
The total solar irradiance (TSI) has been recorded daily since October 2013 by the Total Solar Irradiance Monitor (TSIM) onboard the FY-3C satellite, which is mainly designed for Earth observation. The TSIM has a pointing system to perform solar tracking using a sun sensor. The TSI is measured by two electrical substitution radiometers with traceability to the World Radiation Reference. The TSI value measured with the TSIM on 2 October 2013 is \(1364.88~\mbox{W}\,\mbox{m}^{-2}\) with an uncertainty of \(1.08~\mbox{W}\,\mbox{m}^{-2}\). Short-term TSI variations recorded with the TSIM show good agreement with SOHO/VIRGO and SORCE/TIM. The data quality and accuracy of FY-3C/TSIM are much better than its predecessors on the FY-3A and FY-3B satellites, which operated in a scanning mode.  相似文献   

14.
We use the data for the \(\text{H}\beta\) emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates \(\langle \mbox{SFR} \rangle \) averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking \(\langle \mbox{SFR} \rangle \) and the star formation rate \(\mbox{SFR}_{0}\) derived from the \(\text{H}\beta\) luminosity at zero starburst age is found to be 0.04. We compare \(\langle \mbox{SFR} \rangle \mbox{s}\) with some commonly used SFRs which are derived adopting a continuous star formation during a period of \({\sim}\,100~\mbox{Myr}\), and find that the latter ones are 2–3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for \(\langle \mbox{SFR} \rangle \) determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of \({\sim}\,2\) of the \(\langle \mbox{SFR} \rangle \) averaged over the lifetime of the bursting compact galaxy.  相似文献   

15.
In this work we present the first attempt of modelling the deuterium chemistry in the massive young protostellar core NGC 2264 CMM3. We investigated the sensitivity of this chemistry to the physical conditions in its surrounding environment. The results showed that deuteration, in the protostellar gas, is affected by variations in the core density, the amount of gas depletion onto grain surfaces, the CR ionisation rate, but it is insensitive to variations in the H2 ortho-to-para ratio.Our results, also, showed that deuteration is often enhanced in less-dense, partially depleted (\(<85\%\)), or cores that are exerted to high CR ionisation rates (\(\ge6.5\times10^{-17}~\mbox{s}^{-1}\)). However, in NGC 2264 CMM3, decreasing the amount of gas depleted onto grains and enhancing the CR ionisation rate are often overestimating the observed values in the core. The best fit time to observations occurs around \((1\mbox{--}5) \times 10^{4}~\mbox{yrs}\) for core densities in the range \((1\mbox{--}5)\times10^{6}~\mbox{cm}^{-3}\) with CR ionisation rate between \((1.7\mbox{--}6.5)\times10^{-17}~\mbox{s}^{-1}\). These values are in agreement with the results of the most recent theoretical chemical model of CMM3, and the time range of best fit is, also, in-line with the estimated age of young protostellar objects.We conclude that deuterium chemistry in protostellar cores is: (i) sensitive to variations in the physical conditions in its environment, (ii) insensitive to changes in the H2 ortho-to-para ratio. We also conclude that the core NGC 2264 CMM3 is in its early stages of chemical evolution with an estimated age of \((1\mbox{--}5)\times10^{4}~\mbox{yrs}\).  相似文献   

16.
Sequential chromospheric brightenings (SCBs) are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. Since their initial discovery in 2005, there have been several subsequent investigations of SCBs. These studies have used differing detection and analysis techniques, making it difficult to compare results between studies. This work employs the automated detection algorithm of Kirk et al. (Solar Phys. 283, 97, 2013) to extract the physical characteristics of SCBs in 11 flares of varying size and intensity. We demonstrate that the magnetic substructure within the SCB appears to have a significantly smaller area than the corresponding \(\mbox{H}\upalpha\) emission. We conclude that SCBs originate in the lower corona around \(0.1~R_{\odot}\) above the photosphere, propagate away from the flare center at speeds of \(35\,\mbox{--}\,85~\mbox{km}\,\mbox{s}^{-1}\), and have peak photosphere magnetic intensities of \(148\pm2.9~\mbox{G}\). In light of these measurements, we infer SCBs to be distinctive chromospheric signatures of erupting coronal mass ejections.  相似文献   

17.
We studied the occurrence and characteristics of geomagnetic storms associated with disk-centre full-halo coronal mass ejections (DC-FH-CMEs). Such coronal mass ejections (CMEs) can be considered as the most plausible cause of geomagnetic storms. We selected front-side full-halo coronal mass ejections detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO) from the beginning of 1996 till the end of 2015 with source locations between solar longitudes E10 and W10 and latitudes N20 and S20. The number of selected CMEs was 66 of which 33 (50%) were deduced to be the cause of 30 geomagnetic storms with \(\mathrm{Dst} \leq- 50~\mbox{nT}\). Of the 30 geomagnetic storms, 26 were associated with single disk-centre full-halo CMEs, while four storms were associated, in addition to at least one disk-centre full-halo CME, also with other halo or wide CMEs from the same active region. Thirteen of the 66 CMEs (20%) were associated with 13 storms with \(-100~\mbox{nT} < \mbox{Dst} \leq- 50~\mbox{nT}\), and 20 (30%) were associated with 17 storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\). We investigated the distributions and average values of parameters describing the DC-FH-CMEs and their interplanetary counterparts encountering Earth. These parameters included the CME sky-plane speed and direction parameter, associated solar soft X-ray flux, interplanetary magnetic field strength, \(B_{t}\), southward component of the interplanetary magnetic field, \(B_{s}\), solar wind speed, \(V_{sw}\), and the \(y\)-component of the solar wind electric field, \(E_{y}\). We found only a weak correlation between the Dst of the geomagnetic storms associated with DC-FH-CMEs and the CME sky-plane speed and the CME direction parameter, while the correlation was strong between the Dst and all the solar wind parameters (\(B_{t}\), \(B_{s}\), \(V_{sw}\), \(E_{y}\)) measured at 1 AU. We investigated the dependences of the properties of DC-FH-CMEs and the associated geomagnetic storms on different phases of solar cycles and the differences between Solar Cycles 23 and 24. In the rise phase of Solar Cycle 23 (SC23), five out of eight DC-FH-CMEs were geoeffective (\(\mbox{Dst} \leq- 50~\mbox{nT}\)). In the corresponding phase of SC24, only four DC-FH-CMEs were observed, three of which were nongeoeffective (\(\mbox{Dst} > - 50~\mbox{nT}\)). The largest number of DC-FH-CMEs occurred at the maximum phases of the cycles (21 and 17, respectively). Most of the storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\) occurred at or close to the maximum phases of the cycles. When comparing the storms during epochs of corresponding lengths in Solar Cycles 23 and 24, we found that during the first 85 months of Cycle 23 the geoeffectiveness rate of the disk-centre full-halo CMEs was 58% with an average minimum value of the Dst index of \(- 146~\mbox{nT}\). During the corresponding epoch of Cycle 24, only 35% of the disk-centre full-halo CMEs were geoeffective with an average value of Dst of \(- 97~\mbox{nT}\).  相似文献   

18.
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.  相似文献   

19.
By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at \(60\,\mu \hbox {m}\) and \(100\,\mu \hbox {m}\) IRIS maps. By checking these with AKARI maps (\(90\,\mu \hbox {m}\) and \(140\,\mu \hbox {m}\)), two new cavity-like structures (sizes \(\sim \) \( 2.7\,\hbox {pc} \times 0.8\,\hbox {pc}\) and \(\sim \) \( 1.8\,\hbox {pc} \times 1\,\hbox {pc}\)) located at R.A. (\(\hbox {J}2000)=14^{h}41^{m}23^{s}\) and Dec. \((\hbox {J}2000)=-64^{\circ }04^{\prime }17^{{\prime }{\prime }}\) and R.A. \((\hbox {J}2000)=05^{h}05^{m}35^{s}\) and Dec. \((\hbox {J}2000)=-\,69^{\circ }35^{\prime } 25^{{\prime }{\prime }}\) were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be \(3.2\pm 0.9\,\hbox {K}\) and \(4.1\pm 1.2\,\hbox {K}\), respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.  相似文献   

20.
Plasmaspheric hiss waves have been frequently invoked to explain the slow loss of the radiation belt electrons. However, the effect of hiss waves outside the plasmasphere on the radiation belt electrons remains unclear. Here, on the basis of Van Allen Probes observations and quasilinear simulations, we show that the hiss waves outside the plasmasphere are able to cause the significant precipitation loss of energetic electrons on a timescale of 1 day. In the event of interest, the hiss wave power spectra density reached up to \(10^{-6}~\mbox{nT}^{2}/\mbox{Hz}\), and the obtained pitch-angle diffusion coefficients are found to be \(10^{2}\)\(10^{4}\) times larger than the momentum and cross diffusion coefficients. During a period of 1 day, the modeled hiss waves caused the depletion of 300–500 keV electrons by up to 10 times. These results suggest that the hiss waves outside the plasmasphere should be taken into account in the future radiation belt modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号