首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

3.
In binary stellar systems, exoplanet searches have revealed planetary mass companions orbiting both in circumstellar and in circumbinary orbits. Modelling studies suggest increased dynamical complexity around the young stars that form such systems. Circumstellar and circumbinary disks likely exhibit different physical conditions for planet formation, which also depends on the stellar separation. Although binaries and higher order multiple stars are relatively common in nearby star-forming regions, surprisingly few systems with circumbinary distributions of proto-planetary material have been found. With its spectacular ring of dust and gas encircling the central triple star, one such system, GG Tau A, has become a unique laboratory for investigating the physics of circumsystem gas and dust evolution. We review here its physical properties.  相似文献   

4.
F.J. Ciesla 《Icarus》2009,200(2):655-671
Large-scale radial transport of solids appears to be a fundamental consequence of protoplanetary disk evolution based on the presence of high temperature minerals in comets and the outer regions of protoplanetary disks around other stars. Further, inward transport of solids from the outer regions of the solar nebula has been postulated to be the manner in which short-lived radionuclides were introduced to the terrestrial planet region and the cause of the variations in oxygen isotope ratios in the primitive materials. Here, both outward and inward transport of solids are investigated in the context of a two-dimensional, viscously evolving protoplanetary disk. The dynamics of solids are investigated to determine how they depend on particle size and the particular stage of protoplanetary disk evolution, corresponding to different rates of mass transport. It is found that the outward flows that arise around the disk midplane of a protoplanetary disk aid in the outward transport of solids up to the size of CAIs s and can increase the crystallinity fraction of silicate dust at 10 AU around a solar mass star to as much as ∼40% in the case of rapidly evolving disks, decreasing as the accretion rate onto the star slows. High velocity, inward flows along the disk surface aid in the rapid transport of solids from the outer disk to the inner disk, particularly for small dust. Despite the diffusion that occurs throughout the disk, the large-scale, meridonal flows associated with mass transport prevent complete homogenization of the disk, allowing compositional gradients to develop that vary in intensity for a timescale of one million of years. The variations in the rates and the preferred direction of radial transport with height above the disk midplane thus have important implications for the dynamics and chemical evolution of primitive materials.  相似文献   

5.
刘尧  王红池 《天文学进展》2011,29(2):148-167
原行星盘是环绕在年轻星天体(如T Tauri型星,HAe/Be星)周围的气体尘埃盘,是具有初始角动量的分子云核在塌缩形成恒星过程中的自然结果,是行星系统的起源地。原行星盘研究不仅是恒星形成理论的重要组成部分,而且是行星形成理论的基础。首先介绍了盘的形成与演化规律;然后介绍了年轻星天体的能谱分布,盘的模型和参数(质量吸积率、质量、尺度、温度、寿命);随后讨论了尘埃颗粒在盘中生长的观测证据以及行星在盘中形成的大致过程;最后对原行星盘研究的现状和未来做了总结与展望。  相似文献   

6.
The evolution of protoplanetary disks is regulated by its interaction with the central forming star. This interaction happens through accretion of matter from the disk onto the star, and its most significant signatures are the continuum excess in the UV part of the spectrum and the presence of various emission lines. With the VLT/X-Shooter spectrograph, the excess emission in the UV due to accretion can being studied simultaneously with the signatures in the visible and in the near-infrared, giving a simultaneous and complete view of this phenomenon. Here we present some results we obtained using observation and modeling of the UV-excess in young forming stars, which are: (1) the determination of stellar and accretion properties in candidate older accreting young stellar objects and (2) the study of the star-disk interaction in the early stages of planetary system evolution in transitional disk systems.  相似文献   

7.
D15 Dust and gas in the inner accretion disk around the Herbig star MWC 147 resolved with infrared spectro‐interferometry D21 The effective temperature of OGLE‐TR‐10 – The Balmer α line D29 Metal Injection into the Intracluster Medium D30 Eigenmodes of circumstellar dust shells D40 Numerical Modelling Approach of Circumstellar Dust Shells Around Pulsating AGB Stars Aiming at Multi Time Scale Processes D45 UV radiation induced CO molecule formation patterns in low density PDRs D46 IR properties of calcite and dolomite at low temperatures D47 Observations and Models of Dusty Giants – Past and Present D51 A multi‐method approach to the outer layers of AGB stars D53 On the convective energy transport in M‐type brown dwarf atmospheres D70 Structure and Dust Composition of the TW Hya Disc D75 Chemical Abundances in the Carina Dwarf Spheroidal Galaxy D76 Kinematic and chemical constraints on the formation of M31's inner halo structures D77 IR band profiles of silicate and oxide dust obtained by laboratory measurements of free‐flying particles D98 Dust particle growth in protoplanetary disks D134 Comparative study of dust cloud modelling for substellar atmospheres D137 Photometric study of neglected binary DV Psc D154 Quantitative Spectroscopy of Deneb D160 Hot subluminous Ostars from the SDSS D166 Simultaneous Observations of Solar Ca II H and Ca II 8662 lines and Numerical Simulation of these lines D182 Present‐day carbon abundances in the solar vicinity D189 Detection of a giant planet around a pulsating extreme horizontal branch star: the oldest known planet? D200 Confirmation of a very young binary brown dwarf candidate with disk in Chamaeleon D208 Galaxy ages and metallicities in the cluster A1314 D217 Charge‐dipole induced dust gelation – fastening the process of dust growth in protoplanetary disks D246 Protoplanetary Disk Structure and Evolution  相似文献   

8.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

9.
The evolution of protoplanetary disks around young stars is briefly reviewed. The most important physical mechanisms that drive the mass accretion are gravitational, magnetic, and thermal convective instabilities. These mechanisms are dominant in different regions of the disk and at different evolutionary epochs.  相似文献   

10.
《New Astronomy》2003,8(5):401-414
Recently, Brittain and Rettig, using the cryogenic echelle spectrograph at the Infrared Telescope Facility to study the infrared emission from the inner preplanetary disk of the Herbig Ae/Be star HD141569, detected CO and H3+ ion emission. This emission has been tentatively interpreted as due to the existence of a forming gas giant planet. The suggested protoplanetary blob appears to be orbiting its host star at about 7 AU being perhaps 2 AU across and roughly five times the mass of Jupiter. Based on numerical modeling of the evolution of the dust disk we show that their observational results are compatible with the presence of an evolved giant vortex in the disk. Our calculations suggest that vortices formed in disks similar to the one found around HD141569 are more effective at capturing solid material than equivalent structures around solar-like stars. On the other hand, we investigate the possibility to find evidence for large-scale vortices in preplanetary disks by submillimeter interferometry. Disks around Herbig Ae/Be stars may be primary targets for giant vortex detection using this technique.  相似文献   

11.
We consider a model of a young binary with a low-mass secondary component. Mass accretion from the remnants of the protostellar cloud onto the binary components is assumed to take place in accordance with current models; i.e., it proceeds mainly onto the low-mass component. The accretion is accompanied by mass outflow (disk wind), whose low-velocity component can be partially captured by the primary component. As a result, an asymmetric common envelope is formed. Its densest part is involved in the orbital motion of the secondary and can periodically shield the primary component of the binary from the observer. Assuming a standard dust-to-gas ratio for the disk wind (1: 100), we calculated the possible photometric effects from such eclipses and showed that they could be observed even at moderate accretion rates onto the low-mass binary component, ∼10−8–10−9 M per year. In this case, the parameters of the minima depend on the model of the disk wind, on the ratio of its characteristic velocity to the orbital velocity of the secondary, and on its orbital inclination to the line of sight. These results can form the basis for interpreting a wide range of phenomena observed in young stars, such as the activity cycles in UX Ori stars, the unusually broad minima in some young eclipsing systems, etc., and for searching for substellar objects and massive protoplanets. In addition, the peripheral parts of the gas and dust disk around a young binary can fall within the shadow zone produced by the opaque part of the common envelope. In such cases, a shadow from the common envelope must be observed on the disk; this shadow must move over the disk following the orbital motion of the low-mass component. Detection and investigation of such structures in the images of protoplanetary disks may become a method of searching for protoplanets and studying binaries at early stages of their evolution.  相似文献   

12.
Using the GADGET-2 code modified by us, we have computed hydrodynamic models of a protoplanetary disk perturbed by a low-mass companion. We have considered the cases of circular and eccentric orbits coplanar with the disk and inclined relative to its midplane. During our simulations we computed the column density of test particles on the line of sight between the central star and observer. On this basis we computed the column density of circumstellar dust by assuming the dust and gas to be well mixed with a mass ratio of 1: 100. To study the influence of the disk orientation relative to the observer on the interstellar extinction, we performed our computations for four inclinations of the line of sight to the disk plane and eight azimuthal directions. The column densities in the circumstellar disk of the central star and the circumbinary disk were computed separately. Our computations have shown that periodic column density oscillations can arise in both inner and circumbinary disks. The amplitude and shape of these oscillations depend on the system’s parameters (the orbital eccentricity and inclination, the component mass ratio) and its orientation in space. The results of our simulations can be used to explain the cyclic brightness variations of young UX Ori stars.  相似文献   

13.
Planetesimals orbiting a protostar in a circumstellar disk are affected by gravitational interaction among themselves and by gas drag force due to disk gas. Within the Kyoto model of planetesimal accretion, the migration rate is interpreted as the inverse of the planetary formation time scale. Here, we study time scales of gravitational interaction and gas drag force and their influence on planetesimal migration in detail. Evaluating observations of 86 T Tauri stars (Beckwithet al., 1990), we find the mean radial temperature profile of circumstellar disks. The disk mass is taken to be 0.01M in accordance with minimum mass models and observed T Tauri disks. The time scale of gravitational interaction between planetesimals is studied analogously to Chandrasekhar's stellar dynamics. Hence, Chandrasekhar's coefficient , defined as the fraction between the mean separation of planetesimals and the impact parameter, plays an important role in determining the migration rate. We find ln to lie between 5 and 10 within the protosolar disk. Our result is that, at the stage of disk evolution considered here, gas drag force affects the radial migration of planetesimals by a few orders of magnitude more than gravitational interaction.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

14.
We present some results from our submillimeter single-dish and aperture synthesis imaging surveys of protoplanetary disks using the JCMT, CSO, and Submillimeter Array (SMA) on Mauna Kea, Hawaii. Employing a simple disk model, we simultaneously fit the spectral energy distributions and spatially resolved submillimeter continuum emission from our SMA survey to constrain disk structure properties, including surface density profiles and sizes. The typical disk structure we infer is consistent with a fiducial accretion disk model with a viscosity parameter α≈0.01. Combined with a large, multiwavelength single-dish survey of similar disks, we show how these observations provide evidence for significant grain growth and rapid evolution in the outer regions of disks, perhaps due to an internal photoevaporation process. In addition, we discuss SMA observations of the disks in the Orion Trapezium (proplyds) in the context of disk evolution in a more extreme environment.  相似文献   

15.
The presence of heated circumstellar dust around WC type Wolf-Rayet stars requires the episodic or persistent condensation of carbon grains in their stellar winds. In order to survive in the stars' strong ultraviolet radiation fields, the grains must be located at least 100AU from the stellar surfaces. The densities in isotropic winds at such large distances are too low to allow grain growth and anisotropies such as clumps, disks or wind-collision wakes in colliding-wind binary systems are required to provide grain nurseries. Observational evidence for such features in grain-forming W-R stars is examined.  相似文献   

16.
We present 7 mm and 3.5 cm wavelength continuum observations towards the Herbig AeBe star HD169142 performed with the Very Large Array (VLA) with an angular resolution of ≃1 arcsec. We find that this object exhibits strong (≃4.4 mJy), unresolved (≲1 arcsec) 7 mm continuum emission, being one of the brightest isolated Herbig AeBe stars ever detected with the VLA at this wavelength. No emission is detected at 3.5 cm continuum, with a 3σ upper limit of ≃0.08 mJy. From these values, we obtain a spectral index α≳ 2.5 in the 3.5 cm to 7 mm wavelength range, indicating that the observed flux density at 7 mm is most likely dominated by thermal dust emission coming from a circumstellar disc. We use available photometric data from the literature to model the spectral energy distribution (SED) of this object from radio to near-ultraviolet frequencies. The observed SED can be understood in terms of an irradiated accretion disc with low mass accretion rate,     , surrounding a star with an age of ≃10 Myr. We infer that the mass of the disc is ≃0.04 M, and is populated by dust grains that have grown to a maximum size of 1 mm everywhere, consistent with the lack of silicate 10 μm emission. These features, as well as indications of settling in the wall at the dust destruction radius, led us to speculate that the disc of HD169142 is in an advanced stage of dust evolution, particularly in its inner regions.  相似文献   

17.
Planets result from a series of processes within a circumstellar disk. Evidence comes from the near planar orbits in the Solar System and other planetary systems, observations of newly formed disks around young stars, and debris disks around main-sequence stars. As planet-hunting techniques improve, we approach the ability to detect systems like the Solar System, and place ourselves in context with planetary systems in general. Along the way, new classes of planets with unexpected characteristics are discovered. One of the most recent classes contains super Earth-mass planets orbiting a few AU from low-mass stars. In this contribution, we outline a semi-analytic model for planet formation during the pre-main sequence contraction phase of a low-mass star. As the star contracts, the “snow line”, which separates regions of rocky planet formation from regions of icy planet formation, moves inward. This process enables rapid formation of icy protoplanets that collide and merge into super-Earths before the star reaches the main sequence. The masses and orbits of these super-Earths are consistent with super-Earths detected in recent microlensing experiments.  相似文献   

18.
Conventional planet formation models via coagulation of planetesimals require timescales in the range of several 10 or even 100 Myr in the outer regions of a protoplanetary disk. But according to observational data, the lifetime of a protoplanetary disk is limited to about 6 Myr. Therefore the existence of Uranus and Neptune poses a problem. Planet formation via gravitational instability may be a solution for this discrepancy. We present a parameter study of the possibility of gravitationally triggered disk instability. Using a restricted N‐body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M can probably induce gravitational instabilities in the pre‐planetary solar disk for prograde passages with minimum separations below 80‐170 AU. Inclined and retrograde encounters lead to similar results but require slightly closer passages. Such encounter distances are quite likely in young moderately massive star clusters. The induced gravitational instabilities may lead to enhanced planetesimal formation in the outer regions of the protoplanetary disk, and could therefore be relevant for the formation of Uranus and Neptune. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Having analyzed the light curve for the Herbig Ae star BF Ori, we justify the hypothesis of a giant protocomet, GPC I BF Ori, with a period of 6.3 years and semimajor axis a = 10 ± 3 AU. Passing through periastron, such a giant protocomet partially breaks up. During each passage through periastron, the protocomet and the fragments that follow it supply dust to circumstellar space for a certain period of time. This hypothesis can account for the entire complex of observable phenomena of cyclic Algol-like activity in Herbig Ae/Be and T Tauri stars. Conditions in a protoplanetary disk after cocoon breakup are discussed. We adduce arguments for the absence of a dust disk and for the weak effect of objects other than comets on cyclic large-scale variability.  相似文献   

20.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号