首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The work presented in paper I (Papadakis, K.E., Goudas, C.L.: Astrophys. Space Sci. (2006)) is expanded here to cover the evolution of the approximate general solution of the restricted problem covering symmetric and escape solutions for values of μ in the interval [0, 0.5]. The work is purely numerical, although the available rich theoretical background permits the assertions that most of the theoretical issues related to the numerical treatment of the problem are known. The prime objective of this work is to apply the ‘Last Geometric Theorem of Poincaré’ (Birkhoff, G.D.: Trans. Amer. Math. Soc. 14, 14 (1913); Poincaré, H.: Rend. Cir. Mat. Palermo 33, 375 (1912)) and compute dense sets of axisymmetric periodic family curves covering the initial conditions space of bounded motions for a discrete set of values of the basic parameter μ spread along the entire interval of permissible values. The results obtained for each value of μ, tested for completeness, constitute an approximation of the general solution of the problem related to symmetric motions. The approximate general solution of the same problem related to asymmetric solutions, also computable by application of the same theorem (Poincaré-Birkhoff) is left for a future paper. A secondary objective is identification-computation of the compact space of escape motions of the problem also for selected values of the mass parameter μ. We first present the approximate general solution for the integrable case μ = 0 and then the approximate solution for the nonintegrable case μ = 10−3. We then proceed to presenting the approximate general solutions for the cases μ = 0.1, 0.2, 0.3, 0.4, and 0.5, in all cases building them in four phases, namely, presenting for each value of μ, first all family curves of symmetric periodic solutions that re-enter after 1 oscillation, then adding to it successively, the family curves that re-enter after 2 to 10 oscillations, after 11 to 30 oscillations, after 31 to 50 oscillations and, finally, after 51 to 100 oscillations. We identify in these solutions, considered as functions of the mass parameter μ, and at μ = 0 two failures of continuity, namely: 1. Integrals of motion, exempting the energy one, cease to exist for any infinitesimal positive value of μ. 2. Appearance of a split into two separate sub-domains in the originally (for μ = 0) unique space of bounded motions. The computed approximations of the general solution for all values of μ appear to fulfill the ‘completeness’ criterion inside properly selected sub-domains of the domain of bounded motions in the (x, C) plane, which means that these sub-domains are filled countably densely by periodic family curves, which form a laminar flow-line pattern. The family curves in this pattern may, or may not, be intersected by a ‘basic’ family curve segment of order from 1 up to 3. The isolated points generating asymptotic solutions resemble ‘sink’ points toward which dense sets of periodic family curves spiral. The points in the compact domain in the (x, C) plane resting outside the domain of bounded motions (μ = 0), including the gap between the two large sub-domains (μ > 0) created by the aforementioned split, generate escape motions. The gap between the two large sub-domains of bounded motions grows wider for growing μ. Also, a number of compact gaps that generate escape motions exist within the body of the two sub-domains of bounded motions. The approximate general solutions computed include symmetric, heteroclinic, asymptotic, collision and escape solutions, thus constituting one component of the full approximate general solution of the problem, the second and final component being that of asymmetric solutions.  相似文献   

2.
The general solution of the Henon–Heiles system is approximated inside a domain of the (x, C) of initial conditions (C is the energy constant). The method applied is that described by Poincaré as ‘the only “crack” permitting penetration into the non-integrable problems’ and involves calculation of a dense set of families of periodic solutions that covers the solution space of the problem. In the case of the Henon–Heiles potential we calculated the families of periodic solutions that re-enter after 1–108 oscillations. The density of the set of such families is defined by a pre-assigned parameter ε (Poincaré parameter), which ascertains that at least one periodic solution is computed and available within a distance ε from any point of the domain (x, C) for which the approximate general solution computed. The approximate general solution presented here corresponds to ε = 0.07. The same solution is further improved by “zooming” into four square sub-domain of (x, C), i.e. by computing sufficient number of families that reduce the density parameter to ε = 0.003. Further zooming to reduce the density parameter, say to ε = 10−6, or even smaller, although easily performable in both areas occupied by stable as well as unstable solutions, was found unnecessary. The stability of all members of each and all families computed was calculated and presented in this paper for both the large solution domain and for the sub-domains. The correspondence between areas of the approximate general solution occupied by stable periodic solutions and Poincaré sections with well-aligned section points and also correspondence between areas occupied by unstable solutions and Poincaré sections with randomly scattered section points is shown by calculating such sections. All calculations were performed using the Runge-Kutta (R-K) 8th order direct integration method and the large output received, consisting of many thousands of families is saved as “Atlas of the General Solution of the Henon–Heiles Problem,” including their stability and is available at request. It is concluded that approximation of the general solution of this system is straightforward and that the chaotic character of its Poincaré sections imposes no limitations or difficulties.  相似文献   

3.
This paper presents the approximate general solution of the triple well, double oscillator non-linear dynamical system. This system is non-integrable and the approximate general solution is calculated by application of the Last Geometric Theorem of Poincaré (Birkhoff, 1913, 1925). The original problem, known as the Duffing one, is a 1 degree of freedom system that, besides the conservative force component, includes dumping and external forcing terms (see details in the web site: http://www.uncwil.edu/people/hermanr/chaos/ted/chaos.html). The problem considered here is a 2 degree of freedom, autonomous and conservative one, without dumping, and of axisymmetric potential. The space of permissible motions is scanned for identification of all solutions re-entering after from one to nine oscillations and the precise families of periodic solutions are computed, including their stability parameter, covering all cases with periods T corresponding to 4osc/T. Seven sub-domains of the space of solutions were investigated in detail by zooming, an operation that proved the possibility to advance the accuracy of the approximate general solution to the level permitted by the integration routine. The approximation of the general solution, although impressive, provides clear evidence of the complexity of the problem and the need to proceed to larger period families. Nevertheless, it allows prediction of the areas where chaos and order regions in the Poincaré surfaces of section are to be expected. Examples of such surfaces of sections, as well as of types of closed solutions, are given. Two peculiar points of the space of solutions were identified as crossing, or source points from which infinite families of periodic solutions emanate. The morphology and stability of solutions of the problem are studied and discussed.  相似文献   

4.
This paper gives the results of a programme attempting to exploit ‘la seule bréche’ (Poincaré, 1892, p. 82) of non-integrable systems, namely to develop an approximate general solution for the three out of its four component-solutions of the planar restricted three-body problem. This is accomplished by computing a large number of families of ‘solutions précieuses’ (periodic solutions) covering densely the space of initial conditions of this problem. More specifically, we calculated numerically and only for μ = 0.4, all families of symmetric periodic solutions (1st component of the general solution) existing in the domain D:(x 0 ∊ [−2,2],C ∊ [−2,5]) of the (x 0, C) space and consisting of symmetric solutions re-entering after 1 up to 50 revolutions (see graph in Fig. 4). Then we tested the parts of the domain D that is void of such families and established that they belong to the category of escape motions (2nd component of the general solution). The approximation of the 3rd component (asymmetric solutions) we shall present in a future publication. The 4th component of the general solution of the problem, namely the one consisting of the bounded non-periodic solutions, is considered as approximated by those of the 1st or the 2nd component on account of the `Last Geometric Theorem of Poincaré' (Birkhoff, 1913). The results obtained provoked interest to repeat the same work inside the larger closed domain D:(x 0 ∊ [−6,2], C ∊ [−5,5]) and the results are presented in Fig. 15. A test run of the programme developed led to reproduction of the results presented by Hénon (1965) with better accuracy and many additional families not included in the sited paper. Pointer directions construed from the main body of results led to the definition of useful concepts of the basic family of order n, n = 1, 2,… and the completeness criterion of the solution inside a compact sub-domain of the (x 0, C) space. The same results inspired the ‘partition theorem’, which conjectures the possibility of partitioning an initial conditions domain D into a finite set of sub-domains D i that fulfill the completeness criterion and allow complete approximation of the general solution of this problem by computing a relatively small number of family curves. The numerical results of this project include a large number of families that were computed in detail covering their natural termination, the morphology, and stability of their member solutions. Zooming into sub-domains of D permitted clear presentation of the families of symmetric solutions contained in them. Such zooming was made for various values of the parameter N, which defines the re-entrance revolutions number, which was selected to be from 50 to 500. The areas generating escape solutions have being investigated. In Appendix A we present families of symmetric solutions terminating at asymptotic solutions, and in Appendix B the morphology of large period symmetric solutions though examples of orbits that re-enter after from 8 to 500 revolutions. The paper concludes that approximations of the general solution of the planar restricted problem is possible and presents such approximations, only for some sub-domains that fulfill the completeness criterion, on the basis of sufficiently large number of families.  相似文献   

5.
For the n-centre problem of one particle moving in the potential of attracting centres of small mass fixed in an arbitrary smooth potential and magnetic field, we prove the existence of periodic and chaotic trajectories shadowing sequences of collision orbits. In particular, we obtain large subshifts of solutions of this type for the circular restricted 3-body problem of celestial mechanics. Poincaré had conjectured existence of the periodic ones and given them the name ‘second species solutions’. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We study the change of phase space structure of the rectilinear three-body problem when the mass combination is changed. Generally, periodic orbits bifurcate from the stable Schubart periodic orbit and move radially outward. Among these periodic orbits there are dominant periodic orbits having rotation number (n − 2)/n with n ≥ 3. We find that the number of dominant periodic orbits is two when n is odd and four when n is even. Dominant periodic orbits have large stable regions in and out of the stability region of the Schubart orbit (Schubart region), and so they determine the size of the Schubart region and influence the structure of the Poincaré section out of the Schubart region. Indeed, with the movement of the dominant periodic orbits, part of complicated structure of the Poincaré section follows these orbits. We find stable periodic orbits which do not bifurcate from the Schubart orbit.  相似文献   

7.
Poincaré surface of section technique is used to study the evolution of a family ‘f’ of simply symmetric retrograde periodic orbits around the smaller primary in the framework of restricted three-body problem for a number of systems, actual and hypothetical, with mass ratio varying from 10−7 to 0.015. It is found that as the mass ratio decreases the region of phase space containing the two separatrices shrinks in size and moves closer to the smaller primary. Also the corresponding value of Jacobi constant tends towards 3.  相似文献   

8.
We give here a proof of Bruns’ Theorem which is both complete and as general as possible: Generalized Bruns’ Theorem.In the Newtonian (n+1)-body problem in p with n≥2 and 1≤pn+1, every first integral which is algebraic with respect to positions, linear momenta and time, is an algebraic function of the classical first integrals: the energy, the p(p−1)/2 components of angular momentum and the 2p integrals that come from the uniform linear motion of the center of mass. Bruns’ Theorem only dealt with the Newtonian three-body problem in ℝ3; we have generalized the proof to n+1 bodies in ℝp with pn+1. The whole proof is much more rigorous than the previous versions (Bruns, Painlevé, Forsyth, Whittaker and Hagiara). Poincaré had picked out a mistake in the proof; we have understood and developed Poincaré’s instructions in order to correct this point (see Subsection 3.1). We have added a new paragraph on time dependence which fills in an up to now unnoticed mistake (see Section 6). We also wrote a complete proof of a relation which was wrongly considered as obvious (see Section 3.3). Lastly, the generalization, obvious in some parts, sometimes needed significant modifications, especially for the case p=1 (see Section 4). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This paper is concerned with the extended Delaunay method as well as the method of integration of the equations, applied to first order resonance. The equations of the transformation of the extended Delaunay method are analyzed in the (p + 1)/p type resonance in order to build formal, analytical solutions for the resonant problem with more than one degree of freedom. With this it is possible to gain a better insight into the method, opening the possibility for more generalized applications. A first order resonance in the first approximation is carried out, giving a better comprehension of the method, including showing how to eliminate the ‘Poincaré singularity’ in the higher orders. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Poincaré designed the méthode nouvelle in order to build approximate integrals of Hamiltonians developed as series of a small parameter. Due to several critical deficiencies, however, the method has fallen into disuse in favor of techniques based on Lie transformations. The paper shows how to repair these shortcomings in order to give Poincaré’s méthode nouvelle the same functionality as the Lie transformations. This is done notably with two new operations over power series: a skew composition to expand series whose coefficients are themselves series, and a skew reversion to solve implicit vector equations involving power series. These operations generalize both Arbogast’s technique and Lagrange’s inversion formula to the fullest extent possible. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The vertical stability character of the families of short and long period solutions around the triangular equilibrium points of the restricted three-body problem is examined. For three values of the mass parameter less than equal to the critical value of Routh (μ R ) i.e. for μ = 0.000953875 (Sun-Jupiter), μ = 0.01215 (Earth-Moon) and μ = μ R = 0.038521, it is found that all such solutions are vertically stable. For μ > (μ R ) vertical stability is studied for a number of ‘limiting’ orbits extended to μ = 0.45. The last limiting orbit computed by Deprit for μ = 0.044 is continued to a family of periodic orbits into which the well known families of long and short period solutions merge. The stability characteristics of this family are also studied.  相似文献   

12.
We present five families of periodic solutions of Hill’s problem which are asymmetric with respect to the horizontal ξ axis. In one of these families, the orbits are symmetric with respect to the vertical η axis; in the four others, the orbits are without any symmetry. Each family consists of two branches, which are mirror images of each other with respect to the ξ axis. These two branches are joined at a maximum of Γ, where the family of asymmetric periodic solutions intersects a family of symmetric (with respect to the ξ axis) periodic solutions. Both branches can be continued into second species families for Γ → − ∞.  相似文献   

13.
The behaviour of ‘resonances’ in the spin-orbit coupling in celestial mechanics is investigated in a conservative setting. We consider a Hamiltonian nearly-integrable model describing an approximation of the spin-orbit interaction. The continuous system is reduced to a mapping by integrating the equations of motion through a symplectic algorithm. We study numerically the stability of periodic orbits associated to the above mapping by looking at the eigenvalues of the matrix of the linearized map over the full cycle of the periodic orbit. In particular, the value of the trace of the matrix is related to the stability character of the periodic orbit. We denote by ε* (p/q) the value of the perturbing parameter at which a given elliptic periodic orbit with frequency p/q becomes unstable. A plot of the critical function ε* (p/q) versus the frequency at different orbital eccentricities shows significant peaks at the synchronous resonance (for low eccentricities) and at the synchronous and 3:2 resonances (at higher eccentricities) in good agreement with astronomical observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In a previous work we studied the effects of (I) the J 2 and C 22 terms of the lunar potential and (II) the rotation of the primary on the critical inclination orbits of artificial satellites. Here, we show that, when 3rd-degree gravity harmonics are taken into account, the long-term orbital behavior and stability are strongly affected, especially for a non-rotating central body, where chaotic or collision orbits dominate the phase space. In the rotating case these phenomena are strongly weakened and the motion is mostly regular. When the averaged effect of the Earth’s perturbation is added, chaotic regions appear again for some inclination ranges. These are more important for higher values of semi-major axes. We compute the main families of periodic orbits, which are shown to emanate from the ‘frozen eccentricity’ and ‘critical inclination’ solutions of the axisymmetric problem (‘J 2 + J 3’). Although the geometrical properties of the orbits are not preserved, we find that the variations in e, I and g can be quite small, so that they can be of practical importance to mission planning.  相似文献   

15.
This paper presents the procedure of a computational scheme leading to approximate general solution of the axi-symmetric,2-degrees of freedom dynamical systems. Also the results of application of this scheme in two such systems of the non-linear double oscillator with third and fifth order potentials in position variables. Their approximate general solution is constructed by computing a dense set of families of periodic solutions and their presentation is made through plots of initial conditions. The accuracy of the approximate general solution is defined by two error parameters, one giving a measure of the accuracy of the integration and calculation of periodic solutions procedure, and the second the density in the initial conditions space of the periodic solutions calculated. Due to the need to compute families of periodic solutions of large periods the numerical integrations were carried out using the eighth order, variable step, R-K algorithm, which secured for almost all results presented here conservation of the energy constant between 10-9 and 10-12 for single runs of any and all solutions. The accuracy of the approximate general solution is controlled by increasing the number of family curves and also by `zooming' into parts of the space of initial conditions. All families of periodic solutions were checked for their stability. The computation of such families within areas of `deterministic chaos' did not encounter any difficulty other than poorer precision. Furthermore, on the basis of the stability study of the computed families, the boundaries of areas of `order' and `chaos' were approximately defined. On the basis of these results it is concluded that investigations in thePoincaré sections have to disclose 3 distinct types of areas of `order' and 2 distinct types of areas of `chaos'. Verification of the `order'/`chaos' boundary calculation was made by working out several Poincaré surfaces of sections. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We consider the plane restricted elliptic 3 body problem with small mass ratio and small eccentricity and prove the existence of many periodic orbits shadowing chains of collision orbits of the Kepler problem. Such periodic orbits were first studied by Poincaré for the non-restricted 3 body problem. Poincaré called them second species solutions.  相似文献   

17.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

18.
A simple approximate model of the asteroid dynamics near the 3:1 mean–motion resonance with Jupiter can be described by a Hamiltonian system with two degrees of freedom. The phase variables of this system evolve at different rates and can be subdivided into the ‘fast’ and ‘slow’ ones. Using the averaging technique, wisdom obtained the evolutionary equations which allow to study the long-term behavior of the slow variables. The dynamic system described by the averaged equations will be called the ‘Wisdom system’ below. The investigation of the, wisdom system properties allows us to present detailed classification of the slow variables’ evolution paths. The validity of the averaged equations is closely connected with the conservation of the approximate integral (adiabatic invariant) possessed by the original system. Qualitative changes in the behavior of the fast variables cause the violations of the adiabatic invariance. As a result the adiabatic chaos phenomenon takes place. Our analysis reveals numerous stable periodic trajectories in the region of the adiabatic chaos.  相似文献   

19.
We present a numerical study of the set of orbits of the planar circular restricted three body problem which undergo consecutive close encounters with the small primary, or orbits of second species. The value of the Jacobi constant is fixed, and we restrict the study to consecutive close encounters which occur within a maximal time interval. With these restrictions, the full set of orbits of second species is found numerically from the intersections of the stable and unstable manifolds of the collision singularity on the surface of section that corresponds to passage through the pericentre. A ‘skeleton’ of this set of curves can be computed from the solutions of the two-body problem. The set of intersection points found in this limit corresponds to the S-arcs and T-arcs of Hénon’s classification which verify the energy and time constraints, and can be used to construct an alphabet to describe the orbits of second species. We give numerical evidence for the existence of a shift on this alphabet that describes all the orbits with infinitely many close encounters with the small primary, and sketch a proof of the symbolic dynamics. In particular, we find periodic orbits that combine S-type and T-type quasi-homoclinic arcs.  相似文献   

20.
The motion of Hyperion is an almost perfect application of second kind and second genius orbit, according to Poincaré’s classification. In order to construct such an orbit, we suppose that Titan’s motion is an elliptical one and that the observed frequencies are such that 4n H−3n T+3n ω=0, where n H, n T are the mean motions of Hyperion and Titan, n ω is the rate of rotation of Hyperion’s pericenter. We admit that the observed motion of Hyperion is a periodic motion such as . Then, .N H, N T, kN +. With that hypothesis we show that Hyperion’s orbit tends to a particular periodic solution among the periodic solutions of the Keplerian problem, when Titan’s mass tends to zero. The condition of periodicity allows us to construct this orbit which represents the real motion with a very good approximation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号