首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
3.
Stability of the libration points of a rotating triaxial ellipsoid   总被引:1,自引:0,他引:1  
The problem of stability of the equilibrium points (the libration points) in the problem of motion of a mass point in the neighbourhood of a rotating triaxial ellipsoid is investigated in the strict sense.In the plane of parameters, depending on the form and dynamical characteristics of the ellipsoids, the regions of stability and instability of the libration points are obtained.It is shown that the libration points of the ellipsoids, the form and dynamical characteristics of which are close to the planets of the solar system, are stable.
( ) . , , . , , , .
  相似文献   

4.
Computations of polarization and intensity of radiation from a unit stellar surface area are presented, as well as a study of the numerical characteristics of atmospheres — single-scattering albedo and the initial source function(), which define the polarization behaviour of atmospheres. The radiatively stable models of stellar atmospheres presented by Kuruczet al. (1974) and Kurucz (1979) have been used for calculations. Since the versus optical depth dependence is rather weak, it has been assumed that (=cost. With a fixed effective temperatureT eff maximum values of are characteristic of stars featuring the lowest surface gravity accelerationg. Among stars with radiatively stable atmospheres, maximum values of (=5000 Å) 0.4–0.6 are exhibited by supergiants withT eff=8000–20 000 K. The plot of () is characterized by discontinuities at the boundaries of spectral series for hydrogen and, sometimes, for helium. Maximum are attained in the Lyman region of =912–1200 Å, where can reach the value 0.7–0.9 for supergiants, this value being 0.3 for Main-Sequence stars. For stars withT eff 35 000 K, high values of also are attained for <912 Å. Within the infrared region, is always small because of bremsstrahlung absorption.A rapid growth of the source functionB with < typical for ultraviolet range (within the Wien part of spectrum), together with high values of results in the strong polarization of emission from a unit stellar surface element, sometimes exceeding the values for the case of a pure electron scattering. For longer wavelengths, where the limb-darkening coefficient is smaller, the plane of polarization abruptly turns 90° in the central parts of the visible stellar disk.  相似文献   

5.
6.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

7.
Neckel  Heinz 《Solar physics》2003,212(2):239-250
The coefficients A 0 of the limb-darkening functions I()/I center=P 5()=A ii (i=0,...5, =cos), published by Neckel and Labs (1994), and the corresponding disk-center intensities I center=I(=1), which were taken from the absolutely calibrated Kitt Peak FTS Atlas of the disk center (Brault et al., see Neckel and Labs, 1984, and Neckel 1999), are used to derive `limb intensities' I limb=I(=0)=A 0 I center. The corresponding `limb temperatures' T limb vary only slightly with wavelength; the mean value (4750 K) and the wavelength of maximum intensity (605 nm) conform to Wien's law (max T=0.288 cm K). Further, T limb agrees closely with that temperature, which follows from Avrett's (2000) model of the photosphere for 5000.006; for this layer the optical thickness along the line of sight is close to 1 (`the limb'; compare Unsöld, 1968). The slight variation of T limb with wavelength is presumably due to systematic errors in the Neckel and Labs intensity data: it corresponds almost precisely to the differences between their data and the more recent ones provided by, e.g., Burlov-Vasiljev, Gurtovenko, and Matvejev (1995), and Burlov-Vasiljev, Matvejev, and Vasiljeva (1998). Two simple correction functions (for 550 nm and 550 nm) are proposed, which apply to all Neckel and Labs intensity data (disk center and full disk, line spectrum and (quasi) continuum), and to the absolutely calibrated Kitt-Peak FTS Atlas (spectra of disk center and full disk) as well.  相似文献   

8.
9.
The purpose of this paper is to study, for small values of , the three-dimensional pq resonant orbits that are close to periodic second species solutions (SSS) of the restricted three-body problem. The work is based on an analytic study of the in- and out-maps. These maps are associated to follow, under the flow of the problem, initial conditions on a sphere of radius around the small primary, and consider the images of those initial points on the same sphere. The out-map is associated to follow the flow forward in time and the in-map backwards. For both mappings we give analytical expressions in powers of the mass parameter. Once these expressions are obtained, we proceed to the study of the matching equations between both, obtaining initial conditions of orbits that will be 'periodic' with an error of the order 1–, for some (1/3,1/2). Since, as 0, the inner solution and the outer solution will collide with the small primary, these orbits will be close to SSS.  相似文献   

10.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

11.
Evolution of massive stars losing mass with the rateM H L/V C is computed (for =1,2,7). It is shown that observed mass loss rates correspond to 0.3 and, therefore, mass loss by stellar wind cannot play any significant role in the evolution of normal massive stars. However, for several types of massive stars (WR, OH/IR, X-ray sources) enhanced mass loss explains their peculiar features. Computations of evolutionary sequences of massive stars with convective overshooting taken into account (as a formal increase of the convective core) show that a significant broadening of the hydrogen-burning band in the H-R diagram may be obtained.  相似文献   

12.
An essential part in the mechanics under study is taking into consideration the effect of motions of the Universe objects upon that of an individual one surrounded by them including those infinitely far from it. Only macro-objects of the Universe are meant here.
Zusammenfassung Ein wesentlicher Bestandteil der Mechanik unter unserer Betrachtung ist die Berechnung des Einflusses auf die Bewegung eines individuellen Objektes von Bewegungen der Universum Objekte die es umringen einschließlich jene Objekte, die unendlich entfernt sind. Nur Makroobjekte des Weltalles sind in der Absicht dabei.

, . .
  相似文献   

13.
We emphasize the sharp distinctions between different one-body gravitational trajectories made by the ratio of time averagesR(t)E kin/E pot.R is calculated as a function of the eccentricity (e) and of the energy (E). Whent, independently ofe andE, R1/2 for closed orbits (this clearly illustrates the fulfillment of the virial theorem in classical mechanics); whereasR1, at any time, for open orbits.  相似文献   

14.
qp qz : (1) -, qi , (2) - (R=0.01–0.1R ) (3) - . qs. (1) - 0.1 10–4 cm –2, . - . (2) 108 . . 1042–43 , (25 ). 10% - (0.1 ). , , , , , . . (3) , , - . . (2×1041 ) (1021 ). - 1038–1039 , 0.25 . , , qq . - , , .
The following three mechanisms of generation of gamma-ray bursts at advanced phases of stellar evolution are considered; (1) gamma-ray bursts as a result of absorption of neutrino propagating through the envelope of a collapsing star, (2) gamma-ray burst due to thermal radiation of external layers of a compact star (R=0.01–0.1R ) heated by powerful shock wave, and (3) gamma-ray burst as a consequence of possible ejection of matter from neutron star at some active phases of its evolution. In the case (1) the gamma-ray flux at the top of the Earth's atmosphere is about 10–4 (0.1 MeV photons) cm–2, if a collapsing star is at Galactic distance (10 kpc). It is considerably less than observed one. The observations of such gamma-bursts however would be an important supplement to the direct detection of neutrino radiation from collapsing stars. In the case (2) external layers of a star are heated up to 108 K. As a result we have a short pulse of thermal radiation with total energy of the order of 1042–43 erg. The main fraction of the radiation is in the X-ray ( 25 keV), about 10% of total energy being radiated in gamma-ray ( 0.1 MeV). The energy of such a burst is sufficient for explaining observed gamma-bursts provided the supernova outburst probably takes place in our Galaxy and as a result we have some trouble with explanation of observed frequency and spectra of gammabursts. In the case (3) ejection from neutron star of chemically nonequilibrium matter results in the intensive gamma-radiation in consequence of superheavy nuclei fission followed by beta-decays and radiative captures of free neutrons. The ejection of matter from neutron stars may be connected with observed jumps of pulsar's periods. The total ejected mass ( 1021 g) can be evaluated from increase of kinetic energy ( 2×1041 erg.) of Crab nebula filaments. The resulting theoretical energy of gammabursts is of the order of 1038–39 erg. It is in accordance with observations provided the mean distance of gamma-ray sources is about 0.25 kpc. Contrary to the supernova-outburst mechanism in this case we have probably no troubles with frequency and spectra of gamma-bursts. Among the three mechanisms considered above ejection of matter from neutron stars seems to be a more suitable one for explanation of observations.
  相似文献   

15.
16.
In this paper we introduce a new parameter, the shear angle of vector magnetic fields, , to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the angular shear, , defined by Hagyardet al. (1984). The angular shear, , can be considered as the projection of the shear angle, , on the photosphere. For the active region studied, the shear angle, , seems to have a better and neater correspondence with flare activity than does . The shear angle, , gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.  相似文献   

17.
The implications of the intrinsic luminosity evolution with cosmological epoch on the value of the density parameter () and evolution of radio sizes of extragalactic radio sources have been considered. It is shown that a power law evolution model of the sortP (1 +z) can be used to contrain the value of . In the presence of a strong luminosity evolution, the model yields an upper limit of 0.5.It is also shown that the angular diameter redshift ( – z) relation for quasars can be interpreted in terms of the assumed luminosity evolution combined with a luminosity-linear size correlation with little or no linear size evolution required. On the other hand, strong linear size evolution is needed to explain the – z data for radio galaxies independent of luminosity.  相似文献   

18.
The general conception of the critical inclinations and eccentricities for theN-planet problem is introduced. The connection of this conception with the existence and stability of particular solutions is established. In the restricted circular problem of three bodies the existence of the critical inclinations is proved for any values of the ratio of semiaxes . The asymptotic behaviour of the critical inclinations as 1 is investigated.
. . . 1.
  相似文献   

19.
An analysis of the effects of Hall current on hydromagnetic free-convective flow through a porous medium bounded by a vertical plate is theoretically investigated when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The influence of Hall currents on the flow is studied for various values of .Nomenclature c p specific heat at constant pressure - e electrical charge - E Eckert number - E electrical field intensity - g acceleration due to gravity - G Grashof number - H 0 applied magnetic field - H magnetic field intensity - (j x , j y , j z ) components of current densityJ - J current density - K permeability of porous medium - M magnetic parameter - m Hall parameter - n e electron number density - P Prandtl number - q velocity vector - (T, T w , T ) temperature - t time - (u, v, w) components of the velocity vectorq - U 0 uniform velocity - v 0 suction velocity - (x, y, z) Cartesian coordinates Greek Symbols angle - coefficient of volume expansion - e cyclotron frequency - frequency - dimensionless temperature - thermal conductivity - coefficient of viscosity - magnetic permeability - kinematic viscosity - mass density of fluid - e charge density - electrical conductivity - e electron collision time  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号