首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spectral analysis of the radio noise storm (NS) fluctuations has shown that the power spectrum of any NS is not flat but hyperbolic and is satisfactorily described by the expression G(F) ~ c/F. The spectrum is monotonic and contains no components exceeding the level of statistical fluctuations, i.e., the observations reveal no steady periodic or resonant properties of the emission source. Therefore, the universally accepted assumption about the NS formation from short type I bursts is in conflict with the observations, because the spectrum of the sum of short pulses is flat, while the total energy of all short bursts with durations of the order of one second in actual NSs accounts for only 3–5% of the total energy of the burst component. The remainining 95% of the energy is emitted as long-lived bursts with durations from 1–2 to 300 s. The listed NS properties are inconsistent with the hypothesis of their emission through the action of nanoflares, because the time it takes for the bulk of the energy to be released as pulses with durations >10 s exceeds considerably the lifetime of the events called nanoflares.  相似文献   

2.
EGRET on the Compton Gamma Ray Observatory has detected 5 gammaray bursts above 30 MeV. The sub-MeV emission, as detected by BATSE, for these 5 bursts has the largest fluence,F, and peak intensity,I, of any of the BATSE detected bursts within the EGRET field of view. The BATSE data reported in the 2B catalog and the EGRET exposure,E, are combined to select additional bursts with largeF ×E andI ×E. The EGRET data for these bright BATSE bursts are searched for prompt, as well as delayed, emission above 30 MeV. The average properties of the >30 MeV emission are obtained by adding the EGRET data from the 5 bursts. On average the fluence is greater than 15% of the fluence detected by BATSE below an MeV, and the average spectrum is flatter than the spectrum from 1-30 MeV.  相似文献   

3.
4.
The effects of non-uniform plasma target ionisation on the spectrum of thick-target HXR bremsstrahlung from a non-thermal electron beam are analysed. In particular the effect of the target ionisation structure on beam collisional energy losses, and hence on inversion of an observed photon spectrum to yield the electron injection spectrum, is considered and results compared with those obtained under the usual assumption of a fully ionised target.The problem is formulated and solved in principle for a general target ionisation structure, then discussed in detail for the case of a step function distribution of ionisation with column depth as an approximation to the sharp coronal–chromospheric step structure in solar flare plasmas. It is found that such ionisation structure has very dramatic effects on derivation of the thick-target electron injection spectrum F0(E0) as compared with the result F*0(E 0) obtained under the usual assumption of a fully ionised target: (a) Inferred F*0 contain more electrons than F 0 and in some cases include electrons at energies where none are actually present. Although the total (energy-integrated) beam fluxes in the two cases do not differ by a factor of more than Aee/AeH, the spectral shapes can differ greatly over finite energy intervals resulting in the danger of misleading results for total fluxes obtained by extrapolation. (b) The unconstrained mathematical solution for F0 for any photon spectrum is never unique, while that for F*0 is unique. When the physical constraint F0 0 is added, for some photon spectra solutions for F0 may not exist or may not be unique. (This is not an effect of noise but of real analytic ambiguity.) (c) For data corresponding to F*0 with a low-energy cut-off, or a cut-off or rapid enough exponential decline at high energies, a unique solution F0 does exist and we obtain a recursive summation for its evaluation.Consequently, in future work on the inversion of HXR bremsstrahlung spectra it will be vital for algorithms to include the effects of target ionisation if spurious results on thick-target electron spectra are not to be inferred. Finally it is pointed out that the depth of the transition zone, and its evaporative evolution during flares may be derivable from its effect on the HXR spectrum.  相似文献   

5.
C. S. Li  Q. J. Fu  H. W. Li 《Solar physics》1991,131(2):337-350
Recent observations show that the rapid fluctuations in radio, hard X-ray, and H emissions are closely associated with type III and microwave (or decimetric) bursts during the impulsive and/or preimpulsive phases of solar flares.In order to clarify the physical processes of these observed phenomena, this paper proposes a tentative model of two acceleration regions A (source of type III bursts) and B (source of microwave or decimetric bursts) formed in the neutral sheet and at the top of a flaring loop, respectively; and also suggests that the electron beams streaming from region A and/or region B downward to the chromosphere are responsible for the rapid fluctuations in the different emissions mentioned above during the impulsive and/or pre-impulsive phases of solar flares.  相似文献   

6.

The results of observations of the gravitational-wave (GW) event S190425z recorded by the LIGO/Virgo detectors with the anti-coincidence shield (ACS) of the SPI gamma-ray spectrometer onboard the INTEGRAL observatory are presented. With a high probability (>99%) it was associated with a neutron star (NS) merger in a close binary system. This is only the second event of such a type in the history of gravitational-wave observations (after GW170817). A weak gamma-ray burst, GRB190425, consisting of two pulses ~0.5 and ~5.9 s after the NS merger in the event S190425z with an a priori significance of 3.5 and 4.4σ (taken together 5.5σ) was detected by SPI-ACS. Analysis of the SPI-ACS count rate history recorded on these days (a total of ~125 ks of observations) has shown that the rate of random occurrence of two close spikes with the characteristics of GRB190425 does not exceed 6.4 × 10?5 s?1 (i.e., such events occur by chance, on average, every ~4.3 hours). Note that the time profile of GRB190425 has much in common with the profile of GRB170817A accompanying the event GW170817, that both NS mergers were the nearest (≤150 Mpc) of all the events recorded by the LIGO/Virgo detectors, and that no significant excesses of the gamma-ray flux above the background were detected in any of ~30 black hole merger events recorded to date by these detectors. No bursts of hard radiation were detected in the field of view of the SPI and IBIS/ISGRI gamma-ray telescopes onboard INTEGRAL. This, along with the absence of detection of gamma-ray emission from GRB190425 by the GBM gamma-ray burst monitor of the Fermi observatory suggesting its occultation by the Earth, allows the localization region for the source of this GWevent to be reduced significantly. The parameters Eiso and Ep for GRB190425 are estimated and compared with those for GRB170817A.

  相似文献   

7.
The rapid and seemingly random fluctuations in X-ray luminosity of Seyfert galaxies provided early support for the standard model in which Seyferts are powered by a supermassive black hole fed from an accretion disc. However, since EXOSAT there has been little opportunity to advance our understanding of the most rapid X-ray variability. Observations with XMM-Newton have changed this. We discuss some recent results obtained from XMM-Newton observations of Seyfert 1 galaxies. Particular attention will be given to the remarkable similarity found between the timing properties of Seyferts and black hole X-ray binaries, including the power spectrum and the cross spectrum (time delays and coherence), and their implications for the physical processes at work in Seyferts.  相似文献   

8.
The motions of comets and neutron stars have been integrated over five billion years in the Galactic potential to determine a gamma-ray burst distribution, presuming that bursts are the result of interactions between these two families of objects. The comets originate in two distinct populations - one from ejection by stars in the Galactic disk, and the other from ejection by stars in globular clusters. No choice of the free parameters resulted in agreement with both the isotropy data and the log(N >F)-log(F) data.  相似文献   

9.
10.
The occurrences of 5772 microwave bursts recorded by the Sagamore Hill and Manilla Solar Radio Observatories over the period January 1968 to July 1970, covering the maximum phase of the current solar cycle at frequencies 2695, 4995 and 8800 MHz and their energy excesses have been examined in relation to the S-component of solar radio emission. The average slowly varying component has been determined by the superposed epoch method commonly known as the Chree analysis. Similar treatment of the bursts, data, mentioned above has been made to examine any probable 27-day variation and the results obtained have been compared with that of the S-component. Further, spectra of the microwave bursts under the so-called spectral type - inverted U, particularly those having a peak at 4995 MHz, have also been examined and compared with the average spectrum of the S-component. Some of the important results obtained from the present analysis are: (1) the nature of variation of both the average number of occurrences and energy excesses of the microwave bursts follow in general the average 27-day variation of the S-component, (2) the number of occurrences and energy excesses of the microwave bursts are comparatively greater in the ascending phase of the 27-day cycle than those in the descending phase, (3) bursts at progressively higher frequencies originate at lower levels in the solar atmosphere than those of the associated S-component, and (4) the average spectrum of the microwave bursts of inverted U spectral type having a peak at 4995 MHz is quite identical in nature to that of the S-component.  相似文献   

11.
A.M. Uralov 《Solar physics》1998,183(1):133-155
Possible scattering regimes of the emission from a solar radio source due to dielectric permitivity fluctuations of an extended coronal plasma co-rotating with the Sun are discussed. The exact and approximate expressions are given for the spectrum of temporal intensity fluctuations in the regime of weak scattering. The frequency, at which the spectrum shows a bend, is determined by the location of the effective scattering screen if the source size is not too large. In the regime of strong scattering of the emission from a broadbanded nonimpulsive radio source, the formation of random intensity spikes, namely millisecond, narrowbanded spike bursts is a possibility. Their apparent size can be quite significant. However, the sources with very small true sizes are required in order to produce strong spikes.  相似文献   

12.
The Ulysses spacecraft encountered the planet Jupiter in February 1992, on its journey towards high heliospheric latitude. During the approach to the planet, as well as on the outbound pass, while receding from the Jovian bow shock, the Plasma Frequency Receiver that is part of the Unified Radio and Plasma Wave experiment (URAP) recorded bursts of plasma waves in the frequency range of a few kHz. These emissions, first observed by the PWS experiment onboard the Voyager spacecraft, have been identified as upstream electron plasma waves. In this paper, we present the first analysis of the characteristics of these emissions, which are very similar to those found in the Earth's electron foreshock, upstream of the Earth's bow shock. These bursty emissions, with a peak frequency very close to the local electron plasma frequency Fpe, have a typical electric field amplitude in the range 0.01–0.1 mV m−1, with some bursts above 1 mV m−1. The frequency bandwidth over which significant power can be found above the instrument background noise ranges from below 0.2 Fpc to about 2 Fpc. On the basis of our present knowledge of similar emissions observed at Earth, we suggest that the broadband emissions are triggered by suprathermal (a few tens of eV) electrons, streaming back from Jupiter's bow shock.  相似文献   

13.
A model is presented to explain the highly variable yet low level of Langmuir waves measured in situ by spacecraft when electron beams associated with type III solar bursts are passing by; the low level of excited waves allows the propagation of such streams from the Sun to well past 1 AU without catastrophic energy losses. The model is based, first, on the existence of large-scale density fluctuations that are able to efficiently diffuse small-k beam-unstable Langmuir waves in phase space, and, second, on the presence of a significant isotropic non-thermal tail in the distribution function of the background electron population, which is capable of stabilizing larger k modes. The strength of the model lies in its ability to predict various levels of Langmuir waves depending on the parameters. This feature is consistent with the high variability actually observed in the measurements. The calculations indicate that, for realistic parameters, the most unstable, small k modes are fully stabilized while some oblique mode with higher k and lower growth rate might remain unstable; thus a very broad range of levels of Langmuir waves is possible from levels of the order of enhanced spontaneous emission to the threshold level for nonlinear processes. On the other hand, from in situ measurements of the density fluctuations spectrum by ISEE-1 and 2 in the vicinity of the Earth, it is shown that measured 100 km scale fluctuations may be too effective in quenching the instability. If such strong density fluctuations are common in the solar wind, we show they must be highly anisotropic in order to allow the build-up of Langmuir waves to the observed mV m–1 range. Moreover, the anisotropy must be such that the strongest variations of density occur in a plane perpendicular to the magnetic field.  相似文献   

14.
In astronomical photometry, the sensitivity of observations is limited by the dark counts of the photomultiplier tube. In the present work, the effect of dark count noise in photon counting systems is investigated by theory and experimental measurements. Dark counts are considered to be originating from two sources, namely: dc fluctuations and random pulses.Experimental measurements were carried out to determine noise effects in different operating regions of noise dominance. The results provide strong evidence that: in normal operating mode, where the effect of random pulses is dominant, dark counts do not follow Poisson statistics. The observed noise shows strong (1/f) power spectrum, where the observed noise power is found to increase with time of observation.The results are important in photon counting systems operating under dark count limited mode. The conclusions drawn can be useful in obtaining more accurate error estimates and in assessing astronomical photometric observations and data reduction techniques.  相似文献   

15.
Solar noise storms (NS) are analyzed by an algorithm which separates a random signal into pulses. The burst duration distribution is shown to be inversely proportional to the squared duration of bursts. The distribution ordinates are proportional to the average pulse repetition frequency, and the distribution maximum corresponds to the limiting pulse duration equal to 0.4–0.6 s. The aggregate lifetime of all short-lasting bursts is approximately equal to the aggregate lifetime of bursts of any other duration. The energy of short-lasting bursts with a duration of 0.2–0.4 s is five times smaller than the energy of longer bursts, and it constitutes only 2–5 percent of the energy of the NS burst component. The power of bursts increases as their duration changes from 0.2 to 1.2 s until it reaches some limit at a duration of 1.2–1.4 s. The power of longer bursts remains almost unchanged up to the end of the investigated duration interval (up to durations of 300 s). Solar burst chains can be some superposition of short-lasting bursts on one longer burst. Thus, the burst energy measurements do not support the widespread point of view that solar noise storms consist of short-lasting type I bursts.  相似文献   

16.
Kontar  Eduard P.  Brown  John C.  McArthur  Guillian K. 《Solar physics》2002,210(1-2):419-429
Past analyses of flare hard X-ray (HXR) spectra have largely ignored the effect of nonuniform ionization along the electron paths in the thick-target model, though it is very significant for well-resolved spectra. The inverse problem (photon spectrum to electron injection spectrum F 0(E 0)) is disturbingly non-unique. However, we show that it is relatively simple to allow for the effect in forward fitting of parametric models of F 0(E 0)) and provide an expression to evaluate it for the usual single power-law form of F 0(E 0)).The expression involves the column depth N * of the transition region in the flare loop as one of the parameters so data fitting can enable derivation of N * (and its evaporative evolution) as part of the fitting procedure. The fit to RHESSI data on four flares for a single power law F 0(E 0)) is much improved when ionization structure is included compared to when the usual fully ionized approximation is used. This removes the need, in these events at least, to invoke broken power laws, or other forms, of the acceleration spectrum F 0(E 0)) to explain the observed photon spectrum  相似文献   

17.
18.
The stochastic gravitational fluctuations for a fractal mass distribution are analyzed by means of a functional integral approach. A general method is developed for evaluating the stochastic properties of vectorial additive random fields generated by a variable number of point sources obeying inhomogeneous Poisson statistics. A closed expression for the generating functional of the field is given in terms of the generating functional of the sources. The moments of the resulting vectorial field are finite if the correlation functions of the sources have short tails. In this case all cumulants of the field can be computed exactly: they are averages of the central moments of sources computed in terms of the probability density of the position of a source. The method is applied for analyzing the stochastic gravitational fluctuations generated by a fractal distribution of field sources (stars or galaxies). For a Newtonian force law the correlation functions of the sources are slowly decaying, the cumulants of the stochastic gravitational field are infinite and the probability density of the field intensityF is given by a Lévy fractal stable law with a scaling exponentH depending on the fractal dimensiond f of the distribution of stars or galaxies:H =d f /2.  相似文献   

19.
In the first part of the paper, we study the relations between the frequency of maximum radio flux f max and the magnetic field strength at the photosphere B p and between the maximum radio flux F max and the field and its scale L for two differing flares occurring above very different photospheric conditions. It is shown that the simple relations predicted by the gyro-synchrotron emission mechanism f max B p and F max B 2 L 2 account for the fact that the flares produced microwave bursts of about the same F max, but of differing f max.The spectra of type IV radio bursts associated with three large proton flares with post-flare loops have been analyzed. It is found that the decimetric peak vanishes with the onset of the first optical loops. This is consistent with the model of Kopp and Pneuman (1976) which associates growing systems of loops with gradual fieldline reconnection above flaring regions.  相似文献   

20.
Solar flare accelerated electrons escaping into the interplanetary space and seen as type III solar radio bursts are often detected near the Earth. Using numerical simulations we consider the evolution of energetic electron spectrum in the inner heliosphere and near the Earth. The role of Langmuir wave generation, heliospheric plasma density fluctuations, and expansion of magnetic field lines on the electron peak flux and fluence spectra is studied to predict the electron properties as could be observed by Solar Orbiter and Solar Probe Plus. Considering various energy loss mechanisms we show that the substantial part of the initial energetic electron energy is lost via wave–plasma processes due to plasma inhomogeneity. For the parameters adopted, the results show that the electron spectrum changes mostly at the distances before ~?20 R . Further into the heliosphere, the electron flux spectrum of electrons forms a broken power law relatively similar to what is observed at 1 AU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号