首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Our current understanding of the evolution of solar-type stars suggests that after a period as a red giant star, during which mass loss occurs continuously in the form of a stellar wind, a period of intense mass loss known as a superwind occurs, during which a significant fraction of the envelope of the star is ejected into space, forming the material from which a planetary nebula (PN) will be constructed. It has been suggested that this superwind ejects material from the star in a toroidal or disc-like fashion, rather than isotropically. Here we present Hubble Space Telescope optical images of a toroidal superwind caught in the act: our images of the carbon star IRC+10216, which is believed to be in the final stages of red giant evolution, show that most of its optical emission is a bipolar reflection nebula. We show that the full spectral energy distribution and these images can be modelled as an equatorially enhanced dusty superwind, providing the first direct observational support for the toroidal superwind model, and supporting the 'interacting winds' model of PN formation.  相似文献   

2.
In this paper, we compute theoretically the flux density and the spectral index of the free–free radiation at radio wavelengths produced by shocks in the inner bipolar emission nebula called the little Homunculus around the star η Carinae. The little Homunculus is believed to have formed as a result of the minor eruption suffered by the star in the 1890s. In our model, we consider a simplified interacting stellar wind scenario where the post-outburst η Carinae wind collides with the eruptive outflow (both assumed to be bipolar with conical symmetry). As a result of the interaction, shock-wave structures are formed and generate the development of two polar caps moving in opposite directions. After ∼100 yr (i.e. at present times), the polar caps are located ±2.3 arcsec on each side of the star, and remain embedded within the larger bipolar Homunculus that extends from −8 to +8 arcsec along its major axis. Using observational estimates of the characteristics of the eruptive event of the 1890s, and of the ambient wind powered by η Carinae in the decades after the eruption ended, we study the evolution of the polar caps formed as a result of a sudden increase in the wind velocity and an instantaneous drop in the mass-loss rate (just after the eruption) at the injection radius. We found that the little Homunculus emits continuum radiation that can be detected at radio frequencies and that indeed represents an important contribution to the total free–free emission detected from the η Carinae nebula.  相似文献   

3.
Sakurai's object (V4334 Sgr) is a planetary nebula nucleus which is undergoing its final helium shell flash. This is the first of these rare and important events to be observable with non-optical instruments. We report the first radio detection, using a short (2-h) observation with the Very Large Array (VLA) at 4.86 GHz. The radio emission structure is coincident with the 34-arcsec diameter planetary nebula seen in optical emission lines. We find a statistical distance ∼ 3.8 ± 0.6 kpc, with a range of 1.9 <  D  < 5.3 kpc, depending on the planetary nebula (PN) mass. While we have no direct evidence for a new (post-flash) stellar wind, we estimate an upper limit to the mass-loss rate due to any such wind of 1.7 × 10−7 M⊙ yr−1. The number of emitting knots in the radio-visible nebula indicates an electron density of ∼ 2 × 108 m−3 in those knots, and a total emitting ionized mass of ∼ 0.15 M⊙, at an assumed distance of 3.8 kpc. The radio flux density indicates an Hβ flux of ∼ 6 × 10−16 W m−2, suggesting an extinction E ( B  −  V ) ∼ 1.15, comparable with reddening estimates in the direction of V4334 Sgr.  相似文献   

4.
We present Hα, [N  II ]6583 and 6-cm continuum images of the emission line nebula K 3-35. The optical images reveal an extended nebula (size ≃ 11 × 9 arcsec2 in [N  II ]) in which most of the emission originates in a very narrow (width 0.7–1.3 arcsec) S-shaped region which extends almost all along the nebula (≃ 7 arcsec). The 6-cm continuum emission also arises in this narrow region, which is characterized by an exceedingly high point-symmetry and systematic and continuous changes of the orientation with respect to the nebular centre. The properties of the narrow region suggest that it represents a system of precessing bipolar jet-like components. Two low-excitation, compact bipolar knots near the tips of the jet-like components are observed in the deduced [N  II ]/Hα image ratio. These knots may be generated by the interaction of the collimated outflows with surrounding material. A comparison of the optical and radio images shows the existence of differential extinction within the nebula. Maximum extinction is observed in a disc-like region which traces the equator of the elliptical shell previously observed at 20-cm continuum. All available data strongly suggest that K 3-35 is a very young planetary nebula in which we could be observing the first stages of the formation of collimated outflows and point-symmetric structures typically observed in planetary nebulae. The properties of the jet-like components in K 3-35 are in good agreement with models of binary central stars in which highly collimated outflows originate either from a precessing accretion disc or via magnetic collimation in a precessing star.  相似文献   

5.
CK Vul is classified as, amongst others, the slowest known nova, a hibernating nova or a very late thermal pulse object. Following its eruption in ad 1670, the star remained visible for 2 yr. A 15-arcsec nebula was discovered in the 1980s, but the star itself has not been detected since the eruption. We here present radio images which reveal a 0.1-arcsec radio source with a flux of 1.5 mJy at 5 GHz. Deep Hα images show a bipolar nebula with a longest extension of 70 arcsec, with the previously known compact nebula at its waist. The emission-line ratios show that the gas is shock-ionized, at velocities  >100 km s−1  . Dust emission yields an envelope mass of  ∼5 × 10−2 M  . Echelle spectra indicate outflow velocities up to 360 km s−1. From a comparison of images obtained in 1991 and 2004 we find evidence for expansion of the nebula, consistent with an origin in the 1670 explosion; the measured expansion is centred on the radio source. No optical or infrared counterpart is found at the position of the radio source. The radio emission is interpreted as thermal free–free emission from gas with   T e∼ 104 K  . The radio source may be due to a remnant circumbinary disc, similar to those seen in some binary post-AGB stars. We discuss possible classifications of this unique outburst, including that of a sub-Chandrasekhar mass supernova, a nova eruption on a cool, low-mass white dwarf or a thermal pulse induced by accretion from a circumbinary disc.  相似文献   

6.
We investigate the morphology and kinematics of the interstellar medium in the environs of the open cluster Mrk 50, which includes the Wolf–Rayet star WR 157 and a number of early B-type stars. The analysis was performed using radio continuum images at 408 and 1420 MHz, and H  i 21-cm line data taken from the Canadian Galactic Plane Survey, molecular observations of the 12CO  ( J = 1 → 0)  line at 115 GHz from the Five College Radio Astronomy Observatory and available mid- and far-infrared (FIR) observations obtained with the Midcourse Space Experiment and IRAS satellites, respectively.
This study allowed the identification of the radio continuum and molecular counterpart of the ring nebula SG 13, while no neutral atomic structure was found to be associated. The nebula is also detected in the images in the mid- and FIR, showing the existence of dust well mixed with the ionized gas. We estimate the main physical parameters of the material linked to the nebula.
The interstellar gas distribution in the environs of Mrk 50 is compatible with a stellar wind bubble created by the mass loss from WR 157.
The distribution of young stellar object candidates in the region shows that the stellar formation activity may be present in the molecular shell that encircles the ring nebula.  相似文献   

7.
We present new radio and optical observations of the colliding-wind system WR 146 aimed at understanding the nature of the companion to the Wolf–Rayet (WR) star and the collision of their winds. The radio observations reveal emission from three components: the WR stellar wind, the non-thermal wind–wind interaction region and, for the first time, the stellar wind of the OB companion. This provides the unique possibility of determining the mass-loss rate and terminal wind velocity ratios of the two winds, independent of distance. Respectively, these ratios are 0.20±0.06 and 0.56±0.17 for the OB-companion star relative to the WR star. A new optical spectrum indicates that the system is more luminous than had been believed previously. We deduce that the 'companion' cannot be a single, low-luminosity O8 star as suggested previously, but is either a high-luminosity O8 star, or possibly an O8+WC binary system.  相似文献   

8.
We present narrow band AAO/UKST Hα images and medium and low resolution optical spectra of a nebula shell putatively associated with the Wolf-Rayet star WR 60. We also present the first identification of this shell in the radio regime at 843 MHz and at 4850 MHz from the Sydney University Molonglo Sky Survey (SUMSS), and from the Parkes-MIT-NRAO (PMN) survey respectively. This radio emission closely follows the optical emission. The optical spectra from the shell exhibits the typical shock excitation signatures sometimes seen in Wolf-Rayet stellar ejecta but also common to supernova remnants. A key finding however, is that the WR 60 star, is not, in fact, anywhere near the geometrical centre of the putative arcuate nebula ejecta as had been previously stated. This was due to an erroneous positional identification for the star in the literature which we now correct. This new identification calls into serious question any association of the nebula with WR 60 as such nebula are usually quite well centred on the WR stars themselves. We now propose that this fact combined with our new optical spectra, deeper Hα imaging and newly identified radio structures actually imply that the WR 60 nebula should be reclassified as an unassociated new supernova remnant which we designate G310.5+0.8.  相似文献   

9.
We calculate the X-ray emission from the shocked fast wind blown by the central stars of planetary nebulae (PNe) and compare with observations. Using spherically symmetric self-similar solutions, we calculate the flow structure and X-ray temperature for a fast wind slamming into a previously ejected slow wind. We find that the observed X-ray emission of six PNe can be accounted for by shocked wind segments that were expelled during the early-PN phase, if the fast wind speed is moderate,   v 2∼ 400–600 km s−1  , and the mass-loss rate is a few times  10−7 M yr−1  . We find, as proposed previously, that the morphology of the X-ray emission is in the form of a narrow ring inner to the optical bright part of the nebula. The bipolar X-ray morphology of several observed PNe, which indicates an important role of jets, rather than a spherical fast wind, cannot be explained by the flow studied here.  相似文献   

10.
We present results from observations of H110 α recombination-line emission at 4.874 GHz and the related 4.8-GHz continuum emission towards the Carina nebula using the Australia Telescope Compact Array. These data provide information on the velocity, morphology and excitation parameters of the ionized gas associated with the two bright H  ii regions within the nebula, Car I and Car II. They are consistent with both Car I and Car II being expanding ionization fronts arising from the massive star clusters Trumpler 14 and Trumpler 16, respectively. The overall continuum emission distribution at 4.8 GHz is similar to that at lower frequencies. For Car I, two compact sources are revealed that are likely to be young H  ii regions associated with triggered star formation. These results provide the first evidence of ongoing star formation in the northern region of the nebula. A close association between Car I and the molecular gas is consistent with a scenario in which Car I is currently carving out a cavity within the northern molecular cloud. The complicated kinematics associated with Car II point to expansion from at least two different centres. All that is left of the molecular cloud in this region are clumps of dense gas and dust which are likely to be responsible for shaping the striking morphology of the Car II components.  相似文献   

11.
We calculate the X-ray emission from both constant and time-evolving shocked fast winds blown by the central stars of planetary nebulae (PNe) and compare our calculations with observations. Using spherically symmetric numerical simulations with radiative cooling, we calculate the flow structure and the X-ray temperature and luminosity of the hot bubble formed by the shocked fast wind. We find that a constant fast wind gives results that are very close to those obtained from the self-similar solution. We show that in order for a fast shocked wind to explain the observed X-ray properties of PNe, rapid evolution of the wind is essential. More specifically, the mass-loss rate of the fast wind should be high early on when the speed is  ∼300–700 km s−1  , and then it needs to drop drastically by the time the PN age reaches ∼1000 yr. This implies that the central star has a very short pre-PN (post-asymptotic giant branch) phase.  相似文献   

12.
Hydrogen recombination lines in the H156 α and H139 α transitions have been detected at four widely separated positions in the Gum nebula. This confirms that the radio continuum emission seen in parts of the nebula is predominantly bremsstrahlung rather than synchrotron emission.
The derived electron temperatures and emission measures are in the range 4200 to 8500 K and 220 to 470 pc cm−6 respectively. This is consistent with the presence of a low-density, photoionized plasma. The linewidth observed at the position away from the edge of the nebula is significantly larger than those near the edge of the nebula. Together with the negative line velocity observed at this position, this suggests there is systematic expansion of the near side of the nebula.  相似文献   

13.
We present H  i line and 20-cm radio continuum observations of the NGC 1511 galaxy group obtained with the Australia Telescope Compact Array. The data reveal an extended, rather disturbed H  i distribution for the peculiar starburst galaxy NGC 1511 and a narrow bridge to its small companion galaxy, NGC 1511B, which has been severely distorted by the interaction/collision between the two galaxies. No stellar counterpart to the gaseous bridge has been detected. In addition, we find that the peculiar optical ridge to the east of NGC 1511 is probably the stellar remnant of a galaxy completely disrupted by interactions with NGC 1511. The slightly more distant neighbour, NGC 1511A, shows a regular H  i velocity field and no obvious signs of interactions.
Radio continuum emission from NGC 1511 reveals three prominent sources on top of a more diffuse, extended distribution. We derive an overall star formation rate of  7 M yr−1  . The most enhanced star formation is found in the south-eastern part of the disc, coincident with several bright H  ii regions, and closest to the peculiar optical ridge. No continuum emission was detected in the companions, but NGC 1511B appears to show an H  ii region at its faint western edge, closest to NGC 1511. The group displays a prime example of interaction-induced star formation activity.  相似文献   

14.
We present radio observations and optical spectroscopy of the giant low surface brightness (LSB) galaxy PGC 045080 (or 1300+0144). PGC 045080 is a moderately distant galaxy having a highly inclined optical disc and massive H  i gas content. Radio continuum observations of the galaxy were carried out at 320, 610 MHz and 1.4 GHz. Continuum emission was detected and mapped in the galaxy. The emission appears extended over the inner disc at all three frequencies. At 1.4 GHz and 610 MHz it appears to have two distinct lobes. We also did optical spectroscopy of the galaxy nucleus; the spectrum did not show any strong emission lines associated with active galactic nucleus (AGN) activity but the presence of a weak AGN cannot be ruled out. Furthermore, comparison of the Hα flux and radio continuum at 1.4 GHz suggests that a significant fraction of the emission is non-thermal in nature. Hence we conclude that a weak or hidden AGN may be present in PGC 045080. The extended radio emission represents lobes/jets from the AGN. These observations show that although LSB galaxies are metal poor and have very little star formation, their centres can host significant AGN activity. We also mapped the H  i gas disc and velocity field in PGC 045080. The H  i disc extends well beyond the optical disc and appears warped. In the H  i intensity maps, the disc appears distinctly lopsided. The velocity field is disturbed on the lopsided side of the disc but is fairly uniform in the other half. We derived the H  i rotation curve for the galaxy from the velocity field. The rotation curve has a flat rotation speed of ∼190 km s−1.  相似文献   

15.
We present subarcsec angular resolution observations of the neutral gas in the nearby starburst galaxy NGC 520. The central kpc region of NGC 520 contains an area of significantly enhanced star formation. The radio continuum structure of this region resolves into ∼10 continuum components. By comparing the flux densities of the brightest of these components at 1.4 GHz with published 15-GHz data we infer that these components detected at 1.4 and 1.6 GHz are related to the starburst and are most likely to be collections of several supernova remnants within the beam. None of these components is consistent with emission from an active galactic nuclei. Both neutral hydrogen (H  i ) and hydroxyl (OH) absorption lines are observed against the continuum emission, along with a weak OH maser feature probably related to the star formation activity in this galaxy. Strong H  i absorption  ( N H∼ 1022 atoms cm−2)  traces a velocity gradient of 0.5 km s−1 pc−1 across the central kpc of NGC 520. The H  i absorption velocity structure is consistent with the velocity gradients observed in both the OH absorption and in CO emission observations. The neutral gas velocity structure observed within the central kpc of NGC 520 is attributed to a kpc-scale ring or disc. It is also noted that the velocity gradients observed for these neutral gas components appear to differ with the velocity gradients observed from optical ionized emission lines. This apparent disagreement is discussed and attributed to the extinction of the optical emission from the actual centre of this source hence implying that optical ionized emission lines are only detected from regions with significantly different radii to those sampled by the observations presented here.  相似文献   

16.
Interaction with the interstellar medium (ISM) cannot be ignored in understanding planetary nebula (PN) evolution and shaping. In an effort to understand the range of shapes observed in the outer envelopes of PNe, we have run a comprehensive set of three-dimensional hydrodynamic simulations, from the beginning of the asymptotic giant branch (AGB) superwind phase until the end of the post-AGB/PN phase. A 'triple-wind' model is used, including a slow AGB wind, fast post-AGB wind and third wind reflecting the linear movement through the ISM. A wide range of stellar velocities, mass-loss rates and ISM densities have been considered.
We find that ISM interaction strongly affects outer PN structures, with the dominant shaping occurring during the AGB phase. The simulations predict four stages of PN–ISM interaction whereby (i) the PN is initially unaffected, (ii) then limb-brightened in the direction of motion, (iii) then distorted with the star moving away from the geometric centre, and (iv) finally so distorted that the object is no longer recognizable as a PN and may not be classed as such. Parsec-size shells around PNe are predicted to be common. The structure and brightness of ancient PNe are largely determined by the ISM interaction, caused by rebrightening during the second stage; this effect may address the current discrepancies in Galactic PN abundance. The majority of PNe will have tail structures. Evidence for strong interaction is found for all known PNe in globular clusters.  相似文献   

17.
The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosynchrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100 per cent circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a time-scale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provide us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 min. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking. The study of the coherent emission in stars like CU Vir, as well as in pre-main-sequence stars, can give important insight into the angular momentum evolution in young stars. This is a promising field of investigation that high-sensitivity radio interferometers such as Square Kilometre Array can exploit.  相似文献   

18.
We present an investigation into the spatial variation of the rest-frame ultraviolet (UV) and optical line and continuum emission along the radio axis of the z ∼ 2.6 radio galaxy 0828+193, using long-slit spectra from the Keck II and Subaru telescopes. Line brightnesses, line ratios and electron temperatures are examined, and their relationship with the arm-length asymmetry of the radio source is also investigated. We find that on the side of the nucleus with the shortest radio lobe, the gas covering factor is higher, and the ionization parameter is lower. The contrasts in environmental density required to explain the asymmetries in the line brightness and the radio arm-length asymmetries are in fair agreement with each other. These results add further weight to the conclusion of McCarthy, van Breugel & Kapahi – lobe distance asymmetries in powerful radio sources are the result of an asymmetry in the environmental density.
We also note that the brightness of both the UV and optical continuum emission shows a similar spatial asymmetry to that shown by the line emission. While the UV continuum asymmetry can be wholly explained by the expected asymmetry in the nebular continuum, the optical continuum asymmetry cannot. We argue that, at least at optical wavelengths, the starlight and/or the scattered light must also be strongly spatially asymmetric.  相似文献   

19.
Midcourse Space eXperiment and Infrared Astronomical Satellite colour diagnostics as well as OH maser profile characteristics were used to select a sample of post-asymptotic giant branch (pAGB) candidates for a radio continuum detection experiment with the Australia Telescope Compact Array. Seven out of 28 sources, six of which are new detections, show a continuum. A planetary nebula serendipitously detected in the field of an undetected pAGB candidate also reveals radio continuum. The radio continuum properties of these eight sources are described. Almost half have non-thermal emission. dusty modelling of the infrared spectral energy distributions (SEDs) of the three strongest detections reveals that they all have central stars with temperatures substantially lower than that required for significant photoionization, leading us to infer that the radio continuum has arisen from wind–shock interactions. This hypothesis is consistent with the detection of non-thermal radio emission in one of these three objects.  相似文献   

20.
We present a large set of radio observations of the luminous blue variable P Cygni. These include two 6-cm images obtained with MERLIN which spatially resolve the 6-cm photosphere, monitoring observations obtained at Jodrell Bank every few days over a period of two months, and VLA observations obtained every month for seven years. This combination of data shows that the circumstellar environment of P Cyg is highly inhomogeneous, that there is a radio nebula extending to almost an arcminute from the star at 2 and 6 cm, and that the radio emission is variable on a time-scale no longer than one month, and probably as short as a few days. This short-time-scale variability is difficult to explain. We present a model for the radio emission with which we demonstrate that the star has probably been losing mass at a significant rate for at least a few thousand years, and that it has undergone at least two major outbursts of increased mass loss during the past two millenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号