首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present results from an ongoing X-ray survey of Wolf–Rayet (WR) galaxies, a class of objects believed to be very young starbursts. This paper extends the first X-ray survey of WR galaxies by Stevens &38; Strickland by studying WR galaxies identified subsequent to the original WR galaxy catalogue of Conti.   Out of a sample of 40 new WR galaxies a total of 10 have been observed with the ROSAT PSPC, and of these seven have been detected (NGC 1365, NGC 1569, I Zw 18, NGC 3353, NGC 4449, NGC 5408 and a marginal detection of NGC 2366). Of these, all are dwarf starbursts except for NGC 1365, which is a barred spiral galaxy possibly with an active nucleus. We also report on observations of the related emission-line galaxy IRAS 0833+6517.   The X-ray properties of these galaxies are broadly in line with those found for the original sample; they are X-ray overluminous compared with their blue luminosity and have thermal spectra with typically kT  ∼ 0.4 − 1.0 keV. There are some oddities: NGC 5408 is very overluminous in X-rays, even compared with other WR galaxies; I Zw 18 has a harder X-ray spectrum; NGC 1365, although thought to contain an active nucleus, has X-ray properties that are broadly similar to other WR galaxies, and we suggest that the X-ray emission from NGC 1365 is due to starburst activity.   A good correlation between X-ray and blue luminosity is found for the WR galaxy sample as a whole. However, when just dwarf galaxies are considered there is little evidence of correlation. We discuss the implications of these results on our understanding of the X-ray emission from WR galaxies and suggest that the best explanation for the X-ray activity is starburst activity from a young starburst region.  相似文献   

2.
We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Kα line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only non-detections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.  相似文献   

3.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

4.
We review existing ROSAT detections of single Galactic Wolf–Rayet (WR) stars and develop wind models to interpret the X-ray emission. The ROSAT data, consisting of bandpass detections from the ROSAT All-Sky Survey (RASS) and some pointed observations, exhibit no correlations of the WR X-ray luminosity ( L X) with any star or wind parameters of interest (e.g. bolometric luminosity, mass-loss rate or wind kinetic energy), although the dispersion in the measurements is quite large. The lack of correlation between X-ray luminosity and wind parameters among the WR stars is unlike that of their progenitors, the O stars, which show trends with such parameters. In this paper we seek to (i) test by how much the X-ray properties of the WR stars differ from the O stars and (ii) place limits on the temperature T X and filling factor f X of the X-ray-emitting gas in the WR winds. Adopting empirically derived relationships for T X and f X from O-star winds, the predicted X-ray emission from WR stars is much smaller than observed with ROSAT . Abandoning the T X relation from O stars, we maximize the cooling from a single-temperature hot gas to derive lower limits for the filling factors in WR winds. Although these filling factors are consistently found to be an order of magnitude greater than those for O stars, we find that the data are consistent (albeit the data are noisy) with a trend of in WR stars, as is also the case for O stars.  相似文献   

5.
Kankelborg  Charles  Longcope  Dana 《Solar physics》1999,190(1-2):59-77
We use MDI magnetic field observations and the theory of reconnection through a separator to constrain a numerical simulation of an X-ray bright point observed in EUV by TRACE. A gasdynamic model is employed to describe the corona and transition region in the bright point loop. Nonlocal effects such as opacity and ambipolar diffusion are important to the transition region; these effects are approximated locally by modification of the radiative loss and thermal conduction. A straightforward comparison of measured light curves versus those generated by the simulation shows that the reconnection model is unable to account for the observations. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005205807984  相似文献   

6.
This paper presents the results of the analysis of the very first dedicated X-ray observation with XMM-Newton of WR 106. This carbon-rich WC9d Wolf–Rayet star belongs to the category of persistent dust makers (WCd stars). The issue of the multiplicity of these dust makers is pivotal to understand the dust formation process, and in this context X-ray observations may allow to reveal an X-ray emission attributable to colliding-winds in a binary system. The main result of this analysis is the lack of detection of X-rays coming from WR 106. Upper limits on the X-ray flux are estimated, but the derived numbers are not sufficient to provide compelling constraints on the existence or not of a colliding-wind region. Detailed inspection of archive data bases reveals that persistent dust makers have been poorly investigated by the most sensitive X-ray observatories. Certainly, the combination of several approaches to indirectly constrain their multiplicity should be applied to lift a part of the veil on the nature of these persistent dust makers.  相似文献   

7.
We study the dynamics of magnetic flux loops embedded in an intracluster medium. In order to perform the calculations semi-analytically we make several simplifying assumptions, which include a treatment of only the two ends of the magnetic flux loops, assuming a simple relation between the density and the magnetic field and neglecting heat conduction. Our results indicate that the existence of a large number of magnetic flux loops can naturally lead to a multiphase intracluster medium. A multiphase intracluster medium is inferred from observations of the mass deposition rate in many cooling-flow clusters. The loops will be observed as 'filaments' having different density and temperature from their surroundings, namely X-ray filaments. X-ray filaments have been discovered in a few cases, although their discovery is controversial. Our model predicts that many such X-ray filaments will be discovered with future high-spatial-resolution X-ray telescopes, such as AXAF .  相似文献   

8.
The effects of non-equilibrium ionization are explicitly taken into account in a numerical model which describes colliding stellar winds (CSW) in massive binary systems. This new model is used to analyse the most recent X-ray spectra of the WR+OB binary system WR 147. The basic result is that it can adequately reproduce the observed X-ray emission (spectral shape, observed flux) but some adjustment in the stellar wind parameters is required. Namely (i) the stellar wind velocities must be higher by a factor of 1.4–1.6 and (ii) the mass loss must be reduced by a factor of ∼2. The reduction factor for the mass loss is well within the uncertainties for this parameter in massive stars, but given the fact that the orbital parameters (e.g. inclination angle and eccentricity) are not well constrained for WR 147, even smaller corrections to the mass loss might be sufficient. Only CSW models with non-equilibrium ionization and equal (or nearly equal) electron and ion post-shock temperature are successful. Therefore, the analysis of the X-ray spectra of WR 147 provides evidence that the CSW shocks in this object must be collisionless .  相似文献   

9.
Characteristic times for heating and cooling of the thermal X-ray plasma in solar flares are estimated from the time profile of the thermal X-ray burst and from the temperature, emission measure and over-all length scale of the flare-heated plasma at thermal X-ray maximum. The heating is assumed to be due to magnetic field reconnection, and the cooling is assumed to be due to heat conduction and radiation. Temperatures and emission measures derived from UCSD OSO-7 X-ray flare observations are used, and length scales are obtained from Big Bear large-scale Hα filtergrams for 17 small (subflare to Class 1) flares. The empirical values obtained for the characteristic times imply (1) that flares are produced by magnetic field reconnection, (2) that conduction cooling of the thermal X-ray plasma dominates radiative cooling and (3) that reconnection heating and conduction cooling of the thermal X-ray plasma are approximately in balance at thermal X-ray maximum. This model in combination with the data gives estimates for the electron number density (1010–1011 cm?3) and the magnetic field strength (10–100 G) in the thermal X-ray plasma and for the total thermal energy generated in a subflare (≈ 1030 erg for an Hα area ≈ 1 square degree) which agree with previous observational and theoretical estimates obtained by others.  相似文献   

10.
We solve the nonlinear problem of the dynamics of a steady-state, spherically symmetric stellar wind by taking into account particle acceleration to relativistic energies near the shock front. The particles are assumed to be accelerated through the Fermi mechanism, interacting with stellar-wind turbulence and crossing many times the shock front that separates the supersonic and subsonic stellar-wind regions. We take into account the influence of the accelerated particles on hydrodynamic plasma-flow parameters. Our method allows all hydrodynamic parameters of the shock front and plasma in the supersonic region to be determined in a self-consistent way and the accelerated-particle energy spectrum to be calculated. Our numerical and analytic calculations show that the plasma compression ratio at the shock front increases compared to the case where there are no relativistic particles and that the velocity profile in the supersonic region acquires a characteristic kink. The shape of the energy spectrum for the accelerated particles and their pressure near the front are essentially determined by the presumed dependence of the diffusion coefficient on particle energy, which, in turn, depends on the scale distribution of turbulent pulsations and other stellar-wind inhomogeneities.  相似文献   

11.
Recently, a soft blackbody component was observed in the early X-ray afterglow of GRB 060218, which was interpreted as shock breakout from the thick wind of the progenitor Wolf–Rayet (WR) star of the underlying Type Ic supernova 2006aj. In this paper, we present a simple model for computing the characteristic quantities (including energy, temperature and time duration) for the transient event from the shock breakout in Type Ibc supernovae produced by the core-collapse of WR stars surrounded by dense winds. In contrast to the case of a star without a strong wind, the shock breakout occurs in the wind region rather than inside the star, caused by the large optical depth in the wind. We find that, for the case of a WR star with a dense wind, the total energy of the radiation generated by the supernova shock breakout is larger than that in the case of the same star without a wind by a factor of >10. The temperature can be either hotter or colder, depending on the wind parameters. The time duration is larger caused by the increase in the effective radius of the star due to the presence of a thick wind. Then, we apply the model to GRB 060218/SN 2006aj. We show that, to explain both the temperature and the total energy of the blackbody component observed in GRB 060218 by the shock breakout, the progenitor WR star has to have an unrealistically large core radius (the radius at optical depth of 20), larger than 100 R. In spite of this disappointing result, our model is expected to have important applications to the observations on Type Ibc supernovae in which the detection of shock breakout will provide important clues to the progenitors of Type Ibc supernovae.  相似文献   

12.
We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind–wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called 'pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf–Rayet stars.
As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.  相似文献   

13.
In this paper, I present a theoretical model of a relaxed cluster where the temperature profile (hereafter TP) is structured by electronic thermal conduction. Neglecting cooling and heating terms, the stationary energy conservation equation reduces to a second-order differential equation, the resolution of which requires two boundary conditions, taken here as the inner radius and the ratio between the inner and outer temperature. Thus a two-parameter family of analytical models for the TP is obtained. Once these two constants are chosen, the TP has a fixed analytical expression, which reproduces nicely the observed 'universal' TP obtained by Markevitch et al. from ASCA data. Using observed X-ray surface brightnesses for two hot clusters with spatially resolved TP, the local polytropic index and the hot gas fraction profile are predicted and compared with ASCA observations ( Markevitch et al. 1999 ). Moreover, the total density profile derived from observed X-ray surface brightness, hydrostatic equilibrium and the conduction-driven TP is very well fitted by three analytical profiles found to describe the structure of galactic or cluster haloes in numerical simulations of collisionless matter. With the forthcoming availability of spatially resolved high-quality spectroscopic data, the predicted shape of the TP (related to the temperature dependence of the heat flux for a collisionally ionized plasma) will be tested directly against observations.  相似文献   

14.
We have observed an H dark filament at 8, 15, and 22 GHz and derived the radio spectrum of the filament. We suggest that the filament has to be optically thick at radio frequencies and that the observed spectrum is due to the presence of a transition sheath surrounding the filament. We examine a model for the transition sheath in which the energy radiated away is balanced by the conduction of heat from the corona, and show that the radio observations indicate that little or no thermal energy is conducted into the main body of the filament. We compare the model with ultraviolet observations of filaments and discuss how the discrepancies can be removed.On leave of absence from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

15.
The link between gas dynamical models and observations is crucial. The general progress in numerical simulations must be accompanied by predictions for observable quantities, which not only allow to test the models or parts of them against observations but which also improve the understanding of observational data. In this paper we focus on predictions for observations, for three examples of 3Dhydrodynamical simulations of binary star systems, and the techniques required for their derivation. The examples include synthetic, optically thin Doppler broadened line profiles for colliding wind symbiotic binaries, the UV light curve of an accretion model for the symbiotic binary RW Hya, and the X-ray light curve of the WR+O binaryγ Velorum. The main purpose is to emphasize the importance of such studies and to illustrate the capabilities of the emploiedtools. The tools are all contained in the A-MAZE code package we have developed and are publicly available. Seminar for Applied Mathematics This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
F. Nagai 《Solar physics》1980,68(2):351-379
A dynamical model is proposed for the formation of soft X-ray emitting hot loops in solar flares. It is examined by numerical simulations how a solar model atmosphere in a magnetic loop changes its state and forms a hot loop when the flare energy is released in the form of heat liberation either at the top part or around the transition region in the loop.When the heat liberation takes place at the top part of the loop which arches in the corona, the plasma temperature around the loop apex rises rapidly and, as the result, the downward thermal conductive flux is increased along the magnetic tube of force. Soon after the thermal conduction front rushes into the upper chromosphere, a local peak of pressure is produced near the conduction front and the chromospheric material begins to expand into the corona to form a high-temperature (107 K-3 × 107 K at the loop apex) and high-density (1010 cm–3-1011 cm–3 at the loop apex) loop. The velocity of the expanding material can reach a few hundred kilometres per second in the coronal part. The thermal conduction front also plays a role of piston pushing the chromospheric material downward and gives birth to a shock wave which propagates through the minimum temperature region into the photosphere. If, on the other hand, the heat source is placed around the transition region in the loop, the expansion of the material into the corona occurs from the beginning of the flare and the formation process of the hot loop differs somewhat from the case with the heat source at the top part of the loop.Thermal components of radiations emitted from flare regions, ranging from soft X-rays to radio wavelengths, are interpreted in a unified way by using physical quantities obtained as functions of time and position in our flare loop model as will be discussed in detail in a following paper.  相似文献   

17.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

18.
Two-dimensional calculations in the model of two colliding stellar winds are provided. The effects of energy losses on free-free emission and Comptonization are investigated. The expected X-ray emission of a typical WR+O binary system is calculated.  相似文献   

19.
Using the definition of four important events in the evolution of Massive Close Binary systems, we define five observable evolutionary phases in the life of a Massive Close Binary system: OB+OB, WR+OB, C+OB, C+WR, and WR+WR. We define and compute a number of observable phenomena for large groups of Massive Close Binaries. For one burst of star formation, we compute the number of systems in different evolutionary phases, and the total mass loss as functions of the time. For continuous star formation, we determine the fraction of WR binary stars, occurring in different phases of massive close binary evolution, and a number of average quantities (mass, mass ratio) of WR binary systems. The results are compared with observations of WR binaries in the Galaxy and in Open Clusters.This research is supported by the national Foundation of Collective Fundamental Research (FKFO) of Belgium under contract Nr. 2.9009.79.  相似文献   

20.
The spectra of the supernova SN 2006aj identified with the X-ray flash (XRF) and gammaray burst XRF/GRB 060218/SN 2006aj taken with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences are found to exhibit features, which can be interpreted as hydrogen lines. Such features indicate the existence of a stellar-wind envelope around the massive star—the progenitor of the gamma-ray burst. The results of our modeling of two early spectra taken with the 6-m telescope 2.55 and 3.55 days after the explosion of the type-Ic supernova SN 2006aj (z=0.0331) are reported. The spectra are modeled in the Sobolev approximation using SYNOW code [1, 2]. The spectra of the optical afterglow of the X-ray flash XRF/GRB 060218 are found to exhibit spectral features, which can be interpreted as: (1) the P Cyg-profile of the Hα line for the velocity of 33000 km/s—a broad and small deformation of the continuum in the wavelength interval 5600–6600Å for the first epoch (2.55 days) and (2) a part of the P Cyg-profile of the Hα line in absorption blueshifted by 24000 km/s—a broad spectral feature with a minimum at 6100Å (rest wavelength) for the second epoch (3.55 days). Given earlier observations made with the 6-m telescope and the spectra taken with other telescopes (ESO Lick, ESO VLT and NOT) prior to February 23, 2006, it can be concluded that we are observing the evolution of optical spectra of the type Ic massive supernova SN2006aj during its transition from the short phase with the “shock breakout” into the external layers of the stellar-wind envelope to the spectra of the phase of rising supernova luminosity, which corresponds to radiative heating. We are the first to observe the signs of hydrogen in the spectra of a gamma-ray afterglow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号