首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metallicity, planetary formation and migration   总被引:1,自引:0,他引:1  
Recent observations show a clear correlation between the probability of hosting a planet and the metallicity of the parent star. As radial velocity surveys are biased, however, towards detecting planets with short orbital periods, the probability–metallicity correlation could merely reflect a dependence of migration rates on metallicity. We investigated the possibility, but find no basis to suggest that the migration process is sensitive to the metallicity. The indication is, therefore, that a higher metallicity results in a higher probability for planet  formation .  相似文献   

2.
We present the results of hydrodynamic simulations of Jovian mass protoplanets that form in circumbinary discs. The simulations follow the orbital evolution of the binary plus protoplanet system acting under their mutual gravitational forces, and forces exerted by the viscous circumbinary disc. The evolution involves the clearing of the inner circumbinary disc initially, so that the binary plus protoplanet system orbits within a low density cavity. Continued interaction between disc and protoplanet causes inward migration of the planet towards the inner binary. Subsequent evolution can take three distinct paths: (i) the protoplanet enters the 4 : 1 mean motion resonance with the binary, but is gravitationally scattered through a close encounter with the secondary star; (ii) the protoplanet enters the 4 : 1 mean motion resonance, the resonance breaks, and the planet remains in a stable orbit just outside the resonance; (iii) when the binary has initial eccentricity   e bin≥ 0.2  , the disc becomes eccentric, leading to a stalling of the planet migration, and the formation of a stable circumbinary planet.
These results have implications for a number of issues in the study of extrasolar planets. The ejection of protoplanets in close binary systems provides a source of 'free-floating planets', which have been discovered recently. The formation of a large, tidally truncated cavity may provide an observational signature of circumbinary planets during formation. The existence of protoplanets orbiting stably just outside a mean motion resonance (4 : 1) in the simulations indicate that such sites may harbour planets in binary star systems, and these could potentially be observed. Finally, the formation of stable circumbinary planets in eccentric binary systems indicates that circumbinary planets may not be uncommon.  相似文献   

3.
4.
The phenomenon of negative viscosity-alpha in convectively unstable Keplerian accretion discs is discussed. The convection is considered as a random flow with an axisymmetric mesoscale pattern. Its correlation tensor is computed with a time-averaging procedure using Kley's 2D hydrocode. There is a distinct anisotropy between the turbulence intensities in the radial and azimuthal directions, i.e. the radial velocity rms dominates the azimuthal one. As a consequence, an extra term in the expression for the turbulent transport of angular momentum appears which does not vanish for rigid rotation ('Λ-effect'). It is negative ('inwards transport') and even seems to dominate the positive contribution of the eddy viscosity representing outwards transport of angular momentum. For a turbulence model close to that of the mixing-length theory, the rotational influence on the anisotropy of the turbulence intensities,     , and the covariance  〈 u ' R u ' φ 〉  – representing the angular momentum transport – is computed and compared with the accretion disc simulations. Indeed, the negative angular momentum transport can be explained with the observed dominance of the radial turbulence intensity. If, on the other hand, in turbulence fields the azimuthal intensity would dominate or the turbulence is even isotropic, then we always find a positive transport of the angular momentum.  相似文献   

5.
6.
7.
Do accretion discs regulate the rotation of young stars?   总被引:1,自引:0,他引:1  
We present a photometric study of I -band variability in the young cluster IC 348. The main purpose of the study was to identify periodic stars. In all, we find 50 periodic stars, of which 32 were previously unknown. For the first time in IC 348, we discover periods in significant numbers of lower-mass stars  ( M < 0.25 M)  and classical T Tauri stars. This increased sensitivity to periodicities is a result of the enhanced depth and temporal density of our observations, compared with previous studies. The period distribution is at first glance similar to that seen in the Orion nebula cluster (ONC), with the higher-mass stars  ( M > 0.25 M)  showing a bi-modal period distribution concentrated around periods of 2 and 8 d, and the lower-mass stars showing a uni-modal distribution, heavily biased towards fast rotators. Closer inspection of the period distribution shows that the higher-mass stars show a significant dearth of fast rotators, compared to the ONC, whilst the low-mass stars are rotating significantly faster than those in Orion. We find no correlation between rotation period and K – L colour or Hα equivalent width.
We also present a discussion of our own IC 348 data in the context of previously published period distributions for the ONC, the Orion flanking fields and NGC 2264. We find that the previously claimed correlation between infrared excess and rotation period in the ONC might, in fact, result from a correlation between infrared excess and mass. We also find a marked difference in period distributions between NGC 2264 and IC 348, which presents a serious challenge to the disc-locking paradigm, given the similarity in ages and disc fractions between the two clusters.  相似文献   

8.
9.
10.
11.
We investigate the migration of massive extrasolar planets caused by gravitational interaction with a viscous protoplanetary disc. We show that a model in which planets form at 5 au at a constant rate, before migrating, leads to a predicted distribution of planets that is a steeply rising function of log( a ), where a is the orbital radius. Between 1 and 3 au, the expected number of planets per logarithmic interval in a roughly doubles. We demonstrate that, once selection effects are accounted for, this is consistent with current data, and then extrapolate the observed planet fraction to masses and radii that are inaccessible to current observations. In total, approximately 15 per cent of stars targeted by existing radial velocity searches are predicted to possess planets with masses  0.3< M p sin( i )<10 M J  and radii  0.1< a <5 au  . A third of these planets (around 5 per cent of the target stars) lie at the radii most amenable to detection via microlensing. A further  5–10  per cent of stars could have planets at radii of  5< a <8 au  that have migrated outwards. We discuss the probability of forming a system (akin to the Solar system) in which significant radial migration of the most massive planet does not occur. Approximately  10–15  per cent of systems with a surviving massive planet are estimated to fall into this class. Finally, we note that a smaller fraction of low-mass planets than high-mass planets is expected to survive without being consumed by the star. The initial mass function for planets is thus predicted to rise more steeply towards small masses than the observed mass function.  相似文献   

12.
We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc in the size regime (∼1–5000 km) where the planetesimals behave approximately as test particles in the disc's non-axisymmetric potential. We find that the particles respond to the stochastic, regenerative spiral features in the disc by executing large random excursions (up to a factor of 2 in radius in ∼1000 yr), although typical random orbital velocities are of the order of one tenth of the Keplerian speed. The limited time frame and small number of planetesimals modelled do not permit us to discern any net direction of planetesimal migration. Our main conclusion is that the high eccentricities (∼0.1) induced by interaction with spiral features in the disc is likely to be highly unfavourable to the collisional growth of planetesimals in this size range while the disc is in the self-gravitating regime. Thus if , as recently argued by Rice et al., the production of planetesimals gets under way when the disc is in the self-gravitating regime (either at smaller planetesimal size scales, where gas drag is important, or via gravitational fragmentation of the solid component), the planetesimals thus produced would not be able to grow collisionally until the disc ceases to be self-gravitating. It is unclear, however, given the large amplitude excursions undergone by planetesimals in the self-gravitating disc, whether they would be retained in the disc throughout this period, or whether they would instead be lost to the central star.  相似文献   

13.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   

14.
15.
There is evidence for the existence of massive planets at orbital radii of several hundred au from their parent stars where the time-scale for planet formation by core accretion is longer than the disc lifetime. These planets could have formed close to their star and then migrated outwards. We consider how the transfer of angular momentum by viscous disc interactions from a massive inner planet could cause significant outward migration of a smaller outer planet. We find that it is in principle possible for planets to migrate to large radii. We note, however, a number of effects which may render the process somewhat problematic.  相似文献   

16.
17.
Following the discovery of X-ray absorption in a high-velocity outflow from the bright quasar PG 1211 + 143 we have searched for similar features in XMM–Newton archival data of a second (high accretion rate) quasar PG 0844+349. Evidence is found for several faint absorption lines in both the EPIC and RGS spectra, whose most likely identification with resonance transitions in H-like Fe, S and Ne implies an origin in highly ionized matter with an outflow velocity of order ∼0.2c. The line equivalent widths require a line-of-sight column density of   N H∼ 4 × 1023 cm−2  , at an ionization parameter of log  ξ∼ 3.7  . Assuming a radial outflow being driven by radiation pressure from the inner accretion disc, as suggested previously for PG 1211 + 143, the flow in PG 0844+349 is also likely to be optically thick, in this case within ∼25 Schwarzschild radii. Our analysis suggests that a high-velocity, highly ionized outflow is likely to be a significant component in the mass and energy budgets of active galactic nuclei accreting at or above the Eddington rate.  相似文献   

18.
19.
We present the results of an analysis of ultraviolet observations of T Tauri stars (TTs). By analysing emission measures taken from the literature, we derive rates of ionizing photons from the chromospheres of five classical TTs in the range  ∼1041–1044  photon s−1, although these values are subject to large uncertainties. We propose that the He  ii /C  iv line ratio can be used as a reddening-independent indicator of the hardness of the ultraviolet spectrum emitted by TTs. By studying this line ratio in a much larger sample of objects, we find evidence for an ionizing flux which does not decrease, and may even increase, as TTs evolve. This implies that a significant fraction of the ionizing flux from TTs is not powered by the accretion of disc material on to the central object, and we discuss the significance of this result and its implications for models of disc evolution. The presence of a significant ionizing flux in the later stages of circumstellar disc evolution provides an important new constraint on disc photoevaporation models.  相似文献   

20.
Using 2D magnetohydrodynamic (MHD) numerical simulations performed with two different finite-difference Eulerian codes, we analyse the effect that a toroidal magnetic field has on low-mass planet migration in non-turbulent protoplanetary discs. The presence of the magnetic field modifies the waves that can propagate in the disc. In agreement with a recent linear analysis, we find that two magnetic resonances develop on both sides of the planet orbit, which contribute to a significant global torque. In order to measure the torque exerted by the disc on the planet, we perform simulations in which the latter is either fixed on a circular orbit or allowed to migrate. For a     planet, when the ratio β between the square of the sound speed and that of the Alfven speed at the location of the planet is equal to 2, we find inward migration when the magnetic field   B φ  is uniform in the disc, reduced migration when   B φ  decreases as   r −1  and outward migration when   B φ  decreases as   r −2  . These results are in agreement with predictions from the linear analysis. Taken as a whole, our results confirm that even a subthermal stable field can stop inward migration of an earth-like planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号