首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic reactions in N2-xCH4(C2H2) gas discharges with x less than 1% have been studied by emission spectroscopy in the afterglow of D.C. discharges and by mass spectroscopy from radiolysis ionization using alpha particles. The pressure range is from several Torr to 100 Torr. At the end of N2 D.C. discharges at room temperature, for a residence time of about 10(-2) s, the dominant active species are the N atoms with density of 10(14)-10(15) cm-3 for N2 density of about 10(17) cm-3 (3 Torr), the N2(X,V) vibrational molecules with for example [N2(X,V = 10)] approximately 10(14) cm-3 and the electronic metastable molecules N2(A 3 sigma u +) with a density of 10(12) cm-3. In such conditions, the following kinetic reactions have been studied: N2(A) + N2(A) --> N2(C,B,V') + N2(X), N2(A) + N2(X,V>5) --> N2(X) + N2(B,V') in pure N2 post-discharges and N2(A) + CH4 --> products, C + N + M2 --> CN(B,V') + M2, N2(X,V>4) + CN --> N2(X) + CN(B,A,V'), in N2-1% CH4 post-discharges. The clustering reactions of N2-(1-5%)CH4(C2H2) gas mixtures after radiolysis ionization have been studied for the H2CN+ nN2 ions and the equilibrium constants have been determined in the temperature range T = 140-300 K.  相似文献   

2.
The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.  相似文献   

3.
An asymmetric-top free radical CH2CN, which as a 2B1 ground state, was detected for the first time by laboratory microwave spectroscopy. The radical was produced in a free-space absorption cell by a DC glow discharge in pure CH3CN gas. About 60 fine-structure components were observed for the N = 11-10 to 14-13 a-type rotational transitions in the frequency region of 220-260 GHz, and many hyperfine resolved components for the N = 4-3 and 5-4 transitions in the 80 and 100 GHz regions, respectively. The molecular constants, including the rotational constants, centrifugal distortion constants, and spin-rotation coupling constants with centrifugal distortion correction terms were determined from the fine-structure resolved transitions, and the hyperfine coupling constants due to the hydrogen and nitrogen nuclei were obtained from the low-N transitions. As a result we assigned U100602 and U80484 from Sgr B2, and U40240 and U20120 from TMC-1, to the N = 5-4, 4-3, 2-1, and 1-0 transitions with K-1 = 0 of the CH2CN radical.  相似文献   

4.
We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.  相似文献   

5.
The emission spectrum of comet Skoritchenko–George (C/1989 VI), unusual in its information content, was obtained on February 26.7 UT, 1990, with the use of a TV scanner installed on the 6-m BTA reflector of the Special Astronomical Observatory of the Russian Academy of Sciences (SAO RAS) in Nizhni Arkhyz. Detailed identification of the emission lines of this comet was made. The observed spectrum contains 311 emission lines, including those of the molecules. Among others, the lines of the negative carbon C 2 - ion and the lines corresponding to the electron transition in the neutral CO molecule are discovered. The presence of a large number of lines of the neutral CO molecule (the Asundi bands and the triplet bands) in the visible region is one of the uncommon features of the emission spectrum of this comet. The triplet lines : 15–3, 13–2, 11–2, 9–1, 8–1, 7–1, 7–0, 5–0, 4–0; : 7–0, 6–0, 5–0; and a" : 11–1 (K = 3, 4); 16–4 (K= 0, 1, 2, 4); 9-0 (K= 0, 1, 2); 8–0 (K= 0) were identified for the first time. Prior to this work, the lines of CO in the visible range were observed only in the spectrum of comet C/1979 VI (Bradfield) in 1989.  相似文献   

6.
We have detected a new interstellar molecule, H2CN (methylene amidogen), in the cold, dark molecular cloud TMC-l. The column density of H2CN is estimated to be approximately 1.5 x 10(11) cm-2 by assuming an excitation temperature of 5 K. This column density corresponds to a fractional abundance relative to H2 of approximately 1.5 x 10(-11). This value is more than three orders of magnitude less than the abundance of the related molecule HCN in TMC-1. We also report a tentative detection of H2CN in Sgr B2(N). The formation mechanism of H2CN is discussed. Our detection of the H2CN molecule may suggest the existence of a new series of carbon-chain molecules, CH2CnN (n = 0, 1, 2,...).  相似文献   

7.
We have made an observational study of the newly identified cyanomethane radical CH2CN and the possibly related species CH3CN with the goals of (1) elucidating the possible role of reactions of the type CnHm(+) + N in astrochemistry, and (2) providing a possible test of Bates's models of dissociative electron recombination. We find a remarkably different abundance ratio CH2CN/CH3CN in TMC-1 and Sgr B2, which we deduce is a result of the large difference in temperature of these objects. Studies of CH2CN and CH3CN in other sources, including two new detections of CH2CN, support this conclusion and are consistent with a monotonic increase in the CH2CN/CH3CN ratio with decreasing temperature over the range 10-120 K. This behavior may be explained by the destruction of CH2CN by reaction with O. If this reaction does not proceed, then CH2CN and CH3CN are concluded to form via different chemical pathways. Thus, they do not provide a test of Bates's conjectures (they do not both form from CH3CNH+). CH2CN is then likely to form via C2H4(+) + N --> CH2CNH+, thus demonstrating the viability of this important reaction in astrochemistry. The T dependence of the CH2CN/CH3CN ratio would then reflect the increasing rate of the C2H4(+) + N reaction with decreasing temperature.  相似文献   

8.
We have observed emission from HCN, H13CN, HC15N, HN13C, H15NC, HC3N, CH3CN, and possibly CH3NC, and determined an upper limit for NH2CN, toward the cold, dark cloud TMC-1. The abundance ratio [HNC]/[HCN] = 1.55 +/- 0.16 is at least a factor approximately 4 and approximately 100 greater than that observed toward the giant molecular clouds DR 21(OH) and Orion KL, respectively. In contrast, for the corresponding methylated isomers we obtain [CH3NC]/CH3CN] < or approximately 0.1. We also find [NH2CN]/[CH3CN] < or approximately 0.1 and [HC3N]/[CH3CN] = 30 +/- 10. We find no evidence for anomalous hyperfine ratios for H13CN, indicating that the ratios for HCN (cf. recent work of Walmsley et al.) are the result of self-absorption by cold foreground gas.  相似文献   

9.
We report the astronomical identification of the cyanomethyl radical, CH2CN, the heaviest nonlinear molecular radical to be identified in interstellar clouds. The complex fine and hyperfine structures of the lowest rotational transitions at about 20.12 and 40.24 GHz are resolved in TMC-1, where the abundance appears to be about 5 x 10(-9) relative to that of H2. This is significantly greater than the observed abundance of CH3CN (methyl cyanide) in TMC-1. In Sgr B2 the hyperfine structure is blended in the higher frequency transitions at 40, 80, and 100 GHz, although the spin-rotation doubling is clearly evident. Preliminary searches in other sources indicate that the distribution of CH2CN is similar to that for such carbon chain species as HC3N or C4H.  相似文献   

10.
A new interstellar molecule, methylcyanoacetylene (CH3C3N), has been detected in the molecular cloud TMC-1. The J = 8 --> 7, J = 7 --> 6, J = 6 --> 5, and J = 5 --> 4 transitions have been observed. For the first three of these, both the K = 0 and K = 1 components are present, while for J = 5 --> 4, only the K = 0 line has been detected. The observed frequencies were calculated by assuming a value of radial velocity VLSR = 5.8 km s-1 for TMC-1, typical of other molecules in the cloud. All observed frequencies are within 10 kHz of the calculated frequencies, which are based on the 1982 laboratory constants of Moises et al., so the identification is secure. The lines are broadened by hyperfine splitting, and the J = 5 --> 4, K = 0 transition shows incipient resolution into three hyperfine components. The rotational temperature determined for these observations is quite low, with 2.7 K < or = Trot < or = 4 K. the total column density is approximately 5 x 10(12) cm-2.  相似文献   

11.
A coupled problem of diffusion and condensation is solved for the H2SO4-H2O system in Venus' cloud layer. The position of the lower cloud boundary and profiles of the H2O and H2SO4 vapor mixing ratios and of the H2O/H2SO4 ratio of sulfuric acid aerosol and its flux are calculated as functions of the column photochemical production rate of sulfuric acid, phi H2SO4. Variations of the lower cloud boundary are considered. Our basic model, which is constrained to yield fH2O (30 km) = 30 ppm (Pollack et al. 1993), predicts the position of the lower cloud boundary at 48.4 km coinciding with the mean Pioneer Venus value, the peak H2SO4 mixing ratio of 5.4 ppm, and the H2SO4 production rate phi H2SO4 = 2.2 x 10(12) cm-2 sec-1. The sulfur to sulfuric acid mass flux ratio in the clouds is 1 : 27 in this model, and the mass loading ratio may be larger than this value if sulfur particles are smaller than those of sulfuric acid. The model suggests that the extinction coefficient of sulfuric acid particles with radius 3.7 micrometers (mode 3) is equal to 0.3 km-1 in the middle cloud layer. The downward flux of CO is equal to 1.7 x 10(12) cm-2 sec-1 in this model. Our second model, which is constrained to yield fH2SO4 = 10 ppm at the lower cloud boundary, close to the value measured by the Magellan radiooccultations, predicts the position of this boundary to be at 46.5 km, which agrees with the Magellan data; fH2O(30 km) = 90 ppm, close to the data of Moroz et al. (1983) at this altitude; phi H2SO4 = 6.4 x 10(12) cm-2 sec-1; and phi co = 4.2 x 10(12) cm-2 sec-1. The S/H2SO4 flux mass ratio is 1 : 18, and the extinction coefficient of the mode 3 sulfuric acid particles is equal to 0.9 km-1 in the middle cloud layer. A strong gradient of the H2SO4 vapor mixing ratio near the bottom of the cloud layer drives a large upward flux of H2SO4, which condenses and forms the excessive downward flux of liquid sulfuric acid, which is larger by a factor of 4-7 than the flux in the middle cloud layer. This is the mechanism of formation of the lower cloud layer. Variations of the lower cloud layer are discussed. Our modeling of the OCS and CO profiles in the lower atmosphere measured by Pollack et al. (1993) provides a reasonable explanation of these data and shows that the rate coefficient of the reaction SO3 + CO --> CO2 + SO2 is equal to 10(-11) exp(-(13,100 +/- 1000)/T) cm3/s. The main channel of the reaction between SO3 and OCS is CO2 + (SO)2, and its rate coefficient is equal to 10(-11) exp(-(8900 +/- 500)T)cm3/s. In the conditions of Venus' lower atmosphere, (SO)2 is removed by the reaction (SO)2 + OCS --> CO + S2 + SO2. The model predicts an OCS mixing ratio of 28 ppm near the surface.  相似文献   

12.
We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.  相似文献   

13.
Observations with the Short Wavelength Spectrometer on board the Infrared Space Observatory have led to the first detection of the methyl radical CH(3) in the interstellar medium. The nu(2) Q-branch at 16.5 μm and the R(0) line at 16.0 μm have been unambiguously detected toward the Galactic center Sagittarius A*. The analysis of the measured bands gives a column density of &parl0;8.0+/-2.4&parr0;x1014 cm(-2) and an excitation temperature of 17+/-2 K. Gaseous CO at a similarly low excitation temperature and C(2)H(2) are detected for the same line of sight. Using constraints on the H(2) column density obtained from C(18)O and visual extinction, the inferred CH(3) abundance is &parl0;1.3+2.2-0.7&parr0;x10-8. The chemically related CH(4) molecule is not detected, but the pure rotational lines of CH are seen with the Long Wavelength Spectrometer. The absolute abundances and the CH(3)/CH(4) and CH(3)/CH ratios are inconsistent with published pure gas-phase models of dense clouds. The data require a mix of diffuse and translucent clouds with different densities and extinctions, and/or the development of translucent models in which gas-grain chemistry, freeze-out, and reactions of H with polycyclic aromatic hydrocarbons and solid aliphatic material are included.  相似文献   

14.
Observations of comet Hale-Bopp (C/1995 O1) have been carried out near perihelion (1997 March) at millimeter wavelengths using the NRAO 12 m telescope. The J=1-->0, 2-->1, and 3-->2 lines of HCN at 88, 177, and 265 GHz were measured in the comet as well as the J=3-->2 lines of H13CN, HC15N, and HNC. The N=2-->1 transition of CN near 226 GHz was also detected, and an upper limit was obtained for the J=2-->1 line of HCNH+. From the measurements, column densities and production rates have been estimated. A column density ratio of [HCN]/[HNC] = 7+/-1 was observed near perihelion, while it was found that [HCN]/[HCNH+] greater, similar 1. The production rates at perihelion for HCN and CN were estimated to be Q(HCN) approximately 1x1028 s-1 and Q(CN) approximately 2.6x1027 s-1, respectively, resulting in a ratio of [HCN]/[CN] approximately 3. Consequently, HCN is sufficiently abundant to be the parent molecule of CN in Hale-Bopp, and HCNH+ could be a source of HNC. Finally, carbon and nitrogen isotope ratios of 12C/13C = 109+/-22 and 14N/15N = 330+/-98 were obtained from HCN measurements, in agreement with previous values obtained from J=4-->3 data. Such ratios suggest that comet Hale-Bopp formed coevally with the solar system.  相似文献   

15.
The bifurcation of central configuration in the Newtonian N-body problem for any odd number N ≥ 7 is shown. We study a special case where 2n particles of mass m on the vertices of two different coplanar and concentric regular n-gons (rosette configuration) and an additional particle of mass m0 at the center are governed by the gravitational law he 2n+1 body problem. This system is of two degrees of freedom and permits only one mass parameter μ =m 0/m. This parameter μ controls the bifurcation. If n≥ 3, namely any odd N ≥ 7, then the number of central configurations is three when μ ≥ μ c , and one when μ ≥ μ c . By combining the results of the preceding studies and our main theorem, explicit examples of bifurcating central configuration are obtained for N ≤ 13, for any odd N ∈ [15,943], and for any N ≥ 945.  相似文献   

16.
SiS has been conclusively detected toward Orion-KL via its J = 6-5 and J = 5-4 rotational transitions at 91 and 109 GHz. Line profiles indicate that the species is present at an LSR velocity of 7.5 km s-1 with a half-width at zero power of 36 km s-1. Such characteristics associate SiS with the moderate velocity outflow (V approximately 18 km s-1) centered on IRc2 and observed in thermal SiO, the NH3 "plateau," and OH, H2O, and SiO masers. The column density estimated for SiS in this region is Ntot = 4 x 10(15) cm-2, corresponding to a fractional abundance of f approximately 4 x 10(-9). Such an abundance implies an SiO/SiS ratio of approximately 60 in the outflow material, remarkably close to the cosmic O/S ratio of approximately 40 and contrasting with the SiO/SiS value of > approximately 10(3) predicted by ion-molecule models. This difference is probably a result of the high temperatures and densities present in the outflow, which favor thermal equilibrium abundances similar to those observed in the circumstellar shells of late-type stars rather than "ion-molecule"-type concentrations. In addition to SiS, some twenty new unidentified lines near 91 and 109 GHz were detected toward KL, as well as transitions arising from HC5N, HC13CCN, HCC13CN, O13CS, and, possibly, CH3CH2OH, CH3CHO, and CH3OD.  相似文献   

17.
Using pseudo-time-dependent models and three different reaction networks, a detailed study of the dominant reaction pathways for the formation of cyanopolyynes and their abundances in TMC-1 is presented. The analysis of the chemical reactions show that for the formation of cyanopolyynes there are two major chemical regimes. First, early times of less than ~104 yrs when ion-molecule reactions are dominant, the main chemical route for the formation of larger cyanopolyynes is $$C_n H^ + \xrightarrow{N}C_n N^ + \xrightarrow{{H_2 }}HC_n N^ + \xrightarrow{{H_2 }}H_2 C_n N^ + \xrightarrow{{e^ - }}HC_n N$$ wheren=5, 7, and 9. Second, at times greater than 104 yrs, when neutral-neutral reactions become dominant, two major reaction routes for the formation of cyanopolyynes are (a), $$HCN\xrightarrow{{C_2 H}}HC_3 N\xrightarrow{{C_2 H}}HC_5 N\xrightarrow{{C_2 H}}HC_7 N\xrightarrow{{C_2 H}}HC_9 N$$ and (b) $$C_n H_2 + CN \to HC_{n + 1} N + H,{\text{ }}n = 4,6, and 8$$ depending on the reaction network used. The results indicate that for route (a) large abundances ofC 2 H (fractional abundances of ~10?7), and for route (b) large abundances ofC 2 H 2 are required in order to reproduce the observed abundances of cyanopolyynes. The calculated abundances of cyanopolyynes show great sensitivity to the value of extinction particularly att?5×105 yrs (i.e. photochemical timescale). The effect of other physical parameters, such as the cosmic-ray ionization abundances are also examined. In general, the model calculations show that the observed abundances of cyanopolyynes can be achieved by pseudo-time-dependent models at late times of several million years.  相似文献   

18.
Solar Mesosphere Explorer (SME) observations of the 3 a.m. 1.27 micrometers nightglow at 45 N latitude, averaged over the period 10-31 July 1984, are reported. From the deduced volume emission rates, we derive the O2(a1 delta g) night-time production rates for the 80-100 km altitude range. Utilizing the mean SME-acquired 3 p.m. ozone profile for the same latitude and time period and an updated photochemical model, we determine night-time O, O3, H, OH, HO2, and H2O2 profiles. These are used in calculating the rates of reactions which are sufficiently exothermic to produce O2(1 delta) or excited states of OH or HO2, which could transfer their energy to O2 to form O2(1 delta). Of these reactions, most have rates that are quite small compared with the observed night-time O2(1 delta) production rate. For several others, laboratory experiments have found O2(1 delta) yields which are insufficient for simulating the observed O2(1 delta). Using yields of O2(1 delta) based on published laboratory and observational studies, we find that the sum of two reaction sequences can approximate the SME measurements: (1) O+O+M and (2) H+O3 followed by OH*+O2.  相似文献   

19.
The lowest rotational transitions of CH in the ground electronic state (X2Pi), J=3&solm0;2, N=1<--J=1&solm0;2, N=1, have been observed in the laboratory in the 532.8 and 536.8 GHz regions. All six possible hyperfine components are identified, and the precise transition frequencies are determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号