首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Using a balloon borne double dE/dx x total energy telescope we have determined the isotopic composition of cosmic ray Li, Be and B nuclei in the energy range 100–250 MeV nuc.–1. The measured mass resolution, for these nuclei is 0.3 AMU. The observed isotopic composition is in agreement with that predicted on the basis of interstellar fragmentation with the exception of a deficiency of Be10. If the low abundance of Be10 is attributed to the decay of this radioactive isotope we obtain a mean cosmic ray lifetime of (3.4 –1.3 +3.4 )×106 yr.A recent measurement which we have used in this paper gives this lifetime to be (1.5±0.3)×106 yr (Yiou and Raisbeck, 1972).  相似文献   

2.
We describe an imaging telescope for observations of celestial sources in the energy range between 30 keV and 1.8 MeV onboard stratospheric balloons. The detector is a 41 cm diameter, 5 cm thick NaI(Tl) crystal coupled to 19 photomultipliers in an Anger camera configuration. It is surrounded by a plastic scintillator 15 cm thick on the sides, 0.2 cm thick at the top and 20 cm thick at the bottom. The imaging device is based upon a 19 × 19 element square MURA (Modified Uniformly Redundant Array) coded mask mounted in an one-piece mask-antimask configuration. The detector's spatial resolution is about 10 mm at 100 keV. This is the first experiment to use such a mask pattern and configuration for astrophysical purposes. The expected 3 sensitivity for an on-axis source observed for 104 s at a residual atmosphere of 3.5 g cm–2 is 1.44 × 10–5 photons cm–2 s–1 keV–1 at 100 keV and 1.00 × 10–6 photons cm–2 s–1 keV–1 at 1 MeV. The angular resolution is approximately 14 arcminutes over a 13°field of view. The instrument is mounted in an automatic platform with a capability for pointing and stabilization in both azimuth and elevation axis with 2 arcmin accuracy.Presented at the 2nd UN/ESA Workshop, held in Bogotá, Colombia, 9-13 November, 1992.  相似文献   

3.
The results of observations of the Rosette emission nebula NGC 2237 with the radio telescope UTR-2 at frequencies 12.6, 14.7, 16.7, 20.0 and 25.0 MHz are given in the shape of contours of constant brightness temperature. The half-power beamwidth of the telescope to zenith at 25.0 MHz was 28×38. Density weighted mean values for the non-thermal radio emissivity between the Sun and the source (7.9×10–41 W m–3 Hz–1 ster–1 at 25.0 MHz) and the ratio of the intensity of emissivity generated before the area and the intensity of galactic radio emissivity appearing beyond the area equal to 1.3 have been obtained. The electron temperatureT e=3600 K, the optical depth (about ten at 25 MHz), the measure of emission (ME=3500 cm–6 pc), the electron densityN e=8 cm–3 and the nebular mass 16.6×10+3 M have been determined. A comparison with other observation results has been made.  相似文献   

4.
It is shown that compact designs of multifocus, conical approximations to highly nested Wolter I telescopes, as well as single reflection concentrators, employing realistic graded period W/Si or Ni/C multilayer coatings, allow one to obtain more than 1000 cm2 of on-axis effective area at 40 keV and up to 200 cm2 at 100 keV. The degree of concentration is defined by a focusing factor i.e., the effective area divided by the half power focal area. For the cases studied, this is 400 at 40 keV and 200 at 100 keV for a 2 arcmin imaging resolution. This result is quite insensitive to the specifics of the telescope configuration provided that mirrors can be coated to an inner radius of 3 cm. Specifically we find that a change of focal length from 5 to 12 m affects the effective area by less than 10%. In addition the result is insensitive to the thickness of the individual mirror shell provided that it is smaller than roughly 1 mm. The design can be realized with foils as thin (0.4 mm) as used for ASCA and SODART or with closed, slightly thicker (1.0 mm) mirror shells as used for JET-X and XMM. The effect of an increase of the inner radius is quantified on the effective area for multilayered mirrors up to 9 cm. The calculated Field of View (full width at half maximum), ranges from 9 arcmin at 1 keV to 5 arcmin at 60 keV. Finally, the continuum sensitivity of the design assuming a signal to noise ratio of 5 and a 10% energy bandwidth has been calculated. For a balloon flight observation of 104 sec. with a telescope having 2 arcmin imaging resolution the point source sensitivity is 3 · 10–6 photons/cm2/s/keV up to 70 keV for a W/Si coated telescope and up to 100 keV for a Ni/C coated telescope. For a satellite observation time of 105 sec and an imaging resolution of 1 arcmin the sensitivity is 10–7 photons/cm2/s/keV which demonstrates the great potential of this hard X-ray imaging telescope in the energy range up to 100 keV.  相似文献   

5.
We present calibration results and laboratory images produced by the balloon-borne hard X-ray imaging telescope TIMAX. The images were produced with an241Am radioactive source placed 45 m away from the detector plane, in the center of the field of view. It is shown that the mask 3-antimask imaging reconstruction process, when combined with flat-fielding techniques, is very effective at recovering signal-to-noise ratio lost due to systematic non-uniformity in the background measured by the 35 detectors. The experiment was launched in June 8th, 1993 from Birigüi, SP, Brazil, onboard a 186,000 m3 stratospheric balloon, and remained at an atmospheric depth of 2 g cm–2su for 8 hours. Even though no scientific data were gathered in this first flight, we obtained valuable engineering data and could also calculate the sensitivity of the experiment based on the instrumental background spectrum at balloon altitudes. In the 60–70 keV energy band, the experiment can detect 3 sources at a level of 1.2 x 10–4 photons cm–2 s–1 keV–1 for an integration of 6 hours at 2.1 g cm–2.  相似文献   

6.
An impulsive burst of 100–400 keV solar X-rays associated with a small solar flare was observed on October 10, 1970 with a large area scintillator aboard a balloon floating at an altitude of 4.2 g cm-2 above the Earth's surface. The X-ray burst was also observed simultaneously in 10–80 keV range by the OGO-5 satellite and in 8–20 Å range by the SOLRAD-9 satellite. The impulsive X-ray emission reached its maximum at 1643 UT at which time the differential photon spectrum in 20–80 keV range was of the form 2.3 × 104 E -3.2 photons cm-2 s-1 keV-1 at 1 AU. The event is attributed to a H-subflare located approximately at S13, E88 on the solar disc. The spectral characteristics of this event are examined in the light of the earlier X-ray observations of small solar flares.  相似文献   

7.
The properties of explosive events in the solar transition zone are presented by means of detailed examples and statistical analyses. These events are observed as regions of exceptionally high velocity ( 100 km s–1) in profiles of Civ, formed at 105 K, observed with the High Resolution Telescope and Spectrograph (HRTS). The following average properties have been determined from observations obtained during the third rocket flight of the HRTS: full width at half maximum extent along the slit - 1.6 × 103 km; maximum velocity - 110 km s–1; peak emission measure - 4 × 1041 cm–3; lifetime - 60 s; birthrate - 4 × 10–21 cm–2 s–1 in a coronal hole and 1 × 10–20 cm–2 s–1 in the quiet Sun; mass - 6 × 108 g; and, kinetic energy - 6 × 1022 erg. The 6 examples show that there are considerable variations from these average parameters in individual events. Although small, the events show considerable spatial structure and are not point-like objects. A spatial separation is often detected between the positions of the red and blue shifted components and consequently the profile cannot be explained by turbulence alone. Mass motions in the events appear to be isotropic because the maximum observed velocity does not show any correlation with heliographic latitude. Apparent motions of the 100 km s–1 plasmas during their 60 s lifetime should be detected but none are seen. The spatial frequency of occurrence shows a maximum near latitudes of 40–50°, but otherwise their sites seem to be randomly distributed. There is enough mass in the explosive events that they could make a substantial contribution to the solar wind. It is hard to explain the heating of typical quiet structures by the release of energy in explosive events.  相似文献   

8.
We present the results from a search of pulsed emission in low-energy gamma-rays from GX 1+4 source observed during zenith transit in a balloon experiment in April, 1982. The observed pulsar period is 120.6±0.2 s with pulsed emission flux of (1.3±0.4)×10–5 photons cm–2 s–1 keV–1 at an average energy 342 keV. These pulsations, observed at gamma-ray energies perhaps for the first time from any X-ray pulsar, in conjunction with the period determined in X-rays, indicate a spin-down in contrast with the spin-up behaviour observed by others at earlier epochs.  相似文献   

9.
For nearly two decades, the aperature synthesis telescope known as the Very Large Array (VLA) has been providing a wealth of data on all types of astronomical objects. This telescope fills the need for more powerful and more sensitive instruments to gather data on a vast range of plasma phenomena in astrophysical settings. Currently the VLA is capable of observing at eight radio frequency bands (four corresponding to important spectral lines) with sensitivities on the order of 10–29 Wm –2 Hz –1, or 10–3 Jansky (1 mJy), and noise levels ten times lower. This paper describes the VLA and its capabilities, and describes how researchers interested in plasma astrophysics can use the instrument.  相似文献   

10.
A series of telescopes having approximately a 30° half opening angle and responding to neutrons in the energy range 50 MeV to 350 MeV has been flown to the top of the atmosphere on balloons released from an equatorial launching site at Kampala, Uganda, between 1967 and 1969. The aim of the experiment was to attempt to detect solar neutrons during periods of enhanced solar activity. No neutrons of solar origin were detected, but an upper limit of the order of 30 neutrons m–2 s–1 at the Earth has been placed on the continuous solar neutron flux in the above energy range, and a limit of four photons m–2 s–1 has also been placed on the corresponding -ray flux above 80 MeV. Limits have likewise been placed on the total emission from various flares. For a 1B flare the values were 23 × 104 neutrons m–2 and 6 × 104 photons m–2.  相似文献   

11.
A report on preliminary results obtained from the analysis of the first 700 orbits of data obtained in the University of Rochester particle telescope, carried in the wheel section of OSO-III, is presented. The telescope is sensitive to high-energy -rays (threshold 50 MeV) and the nuclear component of the cosmic radiation. An upper limit of 3.2 × 10–4 /cm2secster. is set on the intensity of the diffuse primary -radiation, on the assumption it arises from the decay of ° mesons produced in nuclear interactions. An upper limit to the flux from the sun, on the same assumptions, is set at 5.5 × 10–5 /cm2 sec. The analysis of the charged particle data yields the integral rigidity spectra of proton and helium nuclei from 3 to 15 GV; the results indicate that the He spectrum is slightly steeper than the proton spectrum and that the ratio P/He increases slowly from a value of approximately 6 at 3 GV to 8 at 15 GV.NASA Predoctoral Trainee.  相似文献   

12.
A new imaging balloon-borne telescope for hard X-rays in the energy range from 30 to 100 keV is described. The imaging capability is provided by the use of an extended URA-based coded-mask. With only one motor and suitable stop pins, we can rotate a carbon-fiber wheel with most of the mask elements attached to it by 180°, and a bar, which is also part of the mask pattern and is allowed to rotate freely over the wheel, by 90°; this combined rotation creates an antimask of the original mask, except for the central element. This is a novel and elegant manner of providing an antimask without additional weight and complex mechanical manipulations. We show that the use of antimasks is a very effective method of eliminating systematic variations in the background map over the position-sensitive detector area. The expected sensitivity of the instrument for the 30–100 keV range is of the order of 7 × 10-5 photons cm-2 s-1 keV-1, for an integration time of 104 seconds at a residual atmosphere of 3.5 g cm-2. This telescope will provide imaging observations of bright galactic hard X-ray sources with an angular resolution of 2° in a 10° by 10° FOV, which is defined by a collimator placed in front of the detector system. We are particularly interested in the galactic center region, where recent imaging results in X-rays have shown the presence of an interesting source field. Results of computer simulations of the imaging system are reported.  相似文献   

13.
We present the results from a search of pulsed emission in low-energy gamma-rays from GX 1+4 source observed during zenith transit in a balloon experiment in April 1982. The observed pulsar period is 120.6±0.2 s with pulsed emission flux of (1.3±0.4)×10–5 photons cm–2s–1 keV–1 at an average energy 342 keV. These pulsations, observed at gamma-ray energies perhaps for the first time from any X-ray pulsar, in conjunction with the period determined in X-rays, indicate a spin-down in contrast with the spin-up behaviour observed by others at earlier epochs.  相似文献   

14.
Colliding comets in the Solar System may be an important source of gamma ray bursts. The spherical gamma ray comet cloud required by the results of the Venera Satellites (Mazets and Golenetskii, 1987) and the BATSE detector on the Compton Satellite (Meeganet al., 1992a, b) is neither the Oort Cloud nor the Kuiper Belt. To satisfy observations ofN(>P max) vsP max for the maximum gamma ray fluxes,P max > 10–5 erg cm–2 s–1 (about 30 bursts yr–1), the comet density,n, should increase asn a 1 from about 40 to 100 AU wherea is the comet heliocentric distance. The turnover above 100 AU requiresn a –1/2 to 200 AU to fit the Venera results andn a 1/4 to 400 AU to fit the BATSE data. Then the masses of comets in the 3 regions are from: 40–100 AU, about 9 earth masses,m E; 100–200 AU about 25m E; and 100–400 AU, about 900m E. The flux of 10–5 erg cm–2 s–1 corresponds to a luminosity at 100 AU of 3 × 1026 erg s–1. Two colliding spherical comets at a distance of 100 AU, each with nucleus of radiusR of 5 km, density of 0.5 g cm–3 and Keplerian velocity 3 km s–1 have a combined kinetic energy of 3 × 1028 erg, a factor of about 100 greater than required by the burst maximum fluxes that last for one second. Betatron acceleration in the compressed magnetic fields between the colliding comets could accelerate electrons to energies sufficient to produce the observed high energy gamma rays. Many of the additional observed features of gamma ray bursts can be explained by the solar comet collision source.  相似文献   

15.
E. Kirsch 《Solar physics》1973,28(1):233-246
Solar neutron emission during large flares is investigated by using neutron monitor data from the mountain stations Chacaltaya (Bolivia), Mina Aguilar (Argentine), Pic-du-Midi (France) and Jungfraujoch (Switzerland). Registrations from such days on which large flares appeared around the local noon time of the monitor station are superimposed with the time of the optical flare as reference point.No positive evidence for a solar neutron emission was found with this method, However, by using an extrapolation of the neutron transport functions given by Alsmiller and Boughner a rough estimation of mean upper limits for the solar neutron flux is possible. The flux limits are compared with Lingenfelter's model calculations.From the Chacaltaya measurements it follows: N 02.8 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P0 = 125 MV N 01.4 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV and from Pic-du-Midi measurements: N 06.7 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 125 MV N 04 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV P 0 = characteristic rigidity of the producing proton spectrum on the Sun.The flux limits estimated for some special proton flares are consistent with Lingenfelter's predictions for the acceleration phase but are too small for the slowing down phase. Therefore it is believed that Lingenfelter's assumption of isotropic proton emission from the flare region is not fulfilled.  相似文献   

16.
The masers of E-type methanol in orion KL and SGR B2   总被引:2,自引:0,他引:2  
Using a simplified model the statistical equilibrium and radiative transfer equations of E-type-CH3OH are solved for Orion KL and SgrB2. According to our calculation results and the observation data taken by Matsakiset al. (1980) and Morimotoet al. (1985a, b), the physical conditions of both sources are estimated. In theJ 2-J 1 E methanol maser region of Orion KL, the density, kinetic temperature, dust temperature, and the fractional abundance are 0.8–2×106 cm–3, 150, 30–90 K, 0.8–8×10–6. In the 4–1-30 E and 5–1-40 E methanol maser region of Sgr B2 the correspondance physical conditions above are 104 cm3, 45, 23 K, and 7×10–7, respectively.  相似文献   

17.
A first period study of the eclipsing binary XY Ceti is presented. A new period (P=2d.7807135), based on all available times of minima, is given. Period changes in different portions of the O–C diagram, with a new period, have been estimated. The total change in period (P/P) ranges from 1.1×10–5 d to 1.2×10–4 d, thus, P ranges from 3.1×10–5 d to 3.3×10–4 d. The O–C diagram suggests that the trend of the period has changed around the year 1959. Two portions of increasing and decreasing trends also reveal that the period changes (P/P) of the order of 10–5 d are present, which are appreciably large.  相似文献   

18.
An intense solar X-ray burst occurred on April 1, 1981. X-ray images of this gradual hard X-ray burst were observed with the hard X-ray telescope aboard the Hinotori satellite for the initial ten minutes of rise and maximum phases of the burst. The hard X-ray images (13–29 keV) look like a large loop without considerable time variation of an elongated main source during the whole observation period. The main X-ray source seems to lie along a ridge of a long coronal arcade 2 × 104 km above a neutral line, while a tangue-like sub-source may be another large coronal loop although the whole structure of the X-ray source looks like a large semi-circular loop. Both nonthermal and hot thermal (3–4 × 107 K) electrons are contributing to the source image. The ratio of these components changed in a wide range from 2.3 to 0.4 during the observation, while the image was rather steady. It suggests that both heating and accelerations of electrons are occurring simultaneously in a common source. Energetic electrons of 15–30 keV would be collisionally trapped in the coronal magnetic loops with density of the order of 1011 cm–3.  相似文献   

19.
Time sequences of simultaneous spectra of limb spicules, obtained using the Sacramento Peak Observatory's tower telescope and echelle spectrograph are analyzed. Intensity determinations of H and K, H, 8498 and 8542 of calcium are tabulated for three observing heights. Electron densities averaged over the entire visible lifetimes of spicules are -6 × 1010 cm–3 at observing heights of 6000km, while maximum and minimum values were -1.1 × 1011 cm–3 at 6000km and - 2 × 1010 cm–3 at 10000km. Electron temperatures range between 12 000 K and 16 000 K. Profile halfwidths indicate turbulent velocities of 12 to 22 km s–1, and spectral tilts are interpreted as caused by differential velocity fields of -3 km s–1 per 1000 km. No large scale spicule expansions or contractions are observed, although possible expulsions or accretions of material are observed. Spicules may be wider in the calcium K and H lines than in H.Now at School of Science and Engineering, The University of Alabama in Huntsville, Huntsville, Alabama.  相似文献   

20.
Observations of the ionized hydrogen region NGC 1499 have been carried out with the radio telescope UTR-2 at frequencies 12.6, 14.7, 16.7, 20 and 25 MHz. The half-power resolution of the instrument to zenith is 28×34 at 25 MHz. The average volume density of the non-thermal radio emission between the Sun and the nebula (1.75×10–40 W m–3 Hz–1 ster–1 at 25 MHz), the electron temperature of the HII nebula (T e =4400 K), the measure of emission (ME=1500 cm–6 pc) and other parameters have been obtained. Maps of brightness distribution over the source are presented for each observation frequency. The results are compared with previously obtained data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号