首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Using RXTE /PCA data, we study the fast variability of the reflected emission in the soft spectral state of Cyg X-1 by means of Fourier frequency-resolved spectroscopy. We find that the rms amplitude of variations of the reflected emission has the same frequency dependence as the primary radiation down to time-scales of ≲30–50 ms. This might indicate that the reflected flux reproduces, with nearly flat response, variations of the primary emission. Such behaviour differs notably from that of the hard spectral state, in which variations of the reflected flux are significantly suppressed in comparison with the primary emission, on time-scales shorter than ∼0.5–1 s.
If related to the finite light-crossing time of the reflector, these results suggest that the characteristic size of the reflector, presumably an optically thick accretion disc, in the hard spectral state is larger by a factor of ≳5–10 than in the soft spectral state. Modelling the transfer function of the disc, we estimate the inner radius of the accretion disc to be R in∼100 R g in the hard state and R in≲10 R g in the soft state for a 10-M black hole.  相似文献   

2.
We examine the physical processes of radiatively driven mass accretion on to galactic nuclei, owing to intensive radiation from circumnuclear starbursts. The radiation from a starburst not only causes the inner gas disc to contract via radition flux force, but also extracts angular momentum owing to relativistic radiation drag, thereby inducing an avalanche of the surface layer of the disc. To analyse such a mechanism, the radiation–hydrodynamical equations are solved, including the effects of the radiation drag force as well as the radiation flux force. As a result, it is found that the mass accretion rate owing to the radiative avalanche is given by M ˙ ( r )= η ( L */ c 2)( r / R )2 (Δ R / R )(1 −  e −τ) at radius r , where the efficiency η ranges from 0.2 up to 1, L * and R are respectively the bolometric luminosity and the radius of the starburst ring, Δ R is the extent of the emission regions, and τ is the face-on optical depth of the disc. In an optically thick regime, the rate depends upon neither the optical depth nor the surface mass density distribution of the disc. The present radiatively driven mass accretion may provide a physical mechanism which enables mass accretion from 100-pc scales down to ∼ parsec scales, and it may eventually be linked to advection-dominated viscous accretion on to a massive black hole. The radiation–hydrodynamical and self-gravitational instabilities of the disc are briefly discussed. In particular, the radiative acceleration possibly builds up a dusty wall, which 'shades' the nucleus in edge-on views. This provides another version of the model for the formation of an obscuring torus.  相似文献   

3.
I solve analytically the viscous evolution of an irradiated accretion disc, as seen during outbursts of soft X-ray transients. The solutions predict steep power-law X-ray decays L X ∼ (1 + t/tvisc)−4, changing to L X ∼ (1 − t/t'visc)4 at late times, where t visc, t 'visc are viscous time-scales. These forms closely resemble the approximate exponential and linear decays inferred by King and Ritter in these two regimes. The decays are much steeper than for unirradiated discs because the viscosity is a function of the central accretion rate rather than of local conditions in the disc.  相似文献   

4.
We suggest that an extreme Kerr black hole with a mass ∼106 M, a dimensionless angular momentum     and a marginally stable orbital radius     located in a normal galaxy may produce a γ -ray burst (GRB) by capturing and disrupting a star. During the capture period, a transient accretion disc is formed and a strong transient magnetic field ∼     lasting for     may be produced at the inner boundary of the accretion disc. A large amount of rotational energy of the black hole is extracted and released in an ultrarelativistic jet with a bulk Lorentz factor Γ larger than 103 via the Blandford–Znajek process. The relativistic jet energy can be converted into γ -radiation via an internal shock mechanism. The GRB duration should be the same as the lifetime of the strong transient magnetic field. The maximum number of sub-bursts is estimated to be     because the disc material is likely to break into pieces with a size about the thickness of the disc h at the cusp     The shortest risetime of the burst estimated from this model is ∼     The model GRB density rate is also estimated.  相似文献   

5.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

6.
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process.  相似文献   

7.
Recent VLBA observation indicates the existence of an elongated (jet) structure in the compact radio source Sgr A*. This is hard to explain in the context of advection-dominated accretion flow (ADAF) model for this source. On the other hand, the mass accretion rate favoured by ADAF is 10–20 times smaller than that favoured by the hydrodynamical simulation based on Bondi capture. If the latter were adopted, the predicted radio flux would significantly exceed the observation. A similar situation exists in the case of nearby giant ellipticals, where the canonical ADAF model – the widely assumed standard model for these sources – also significantly overpredicts the radio flux. Based on these facts, in this paper we propose a truncated ADAF model for Sgr A* and three ellipticals M87, NGC 4649 and NGC 4636. We assume that the accretion disc is truncated at a certain radius R tr within which the jet forms by extracting the energy of the disc. The radio flux is greatly suppressed owing to the radiative truncation of the disc and the fits to the observational data are excellent. For example, for Sgr A*, the model fits the observational spectrum very well from radio including the 'excess' below the break frequency to hard X-ray under a high accretion rate near the simulation value, and the predicted size-frequency relationship is also in excellent agreement with the observation; for M87, the predicted upper limit of the jet location is 24 R g, in excellent agreement with the observational result that the jet is formed on scales smaller than 30 R g, and the ≈20 per cent variability at ∼1 keV – which is hard to explain in another model that succeeded in explaining the low radio flux of M87 – is also marginally interpreted. The success of the model supplies possible evidence for the disc rather than the hole origin for the powering of jets.  相似文献   

8.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

9.
We present a ROSAT and ASCA study of the Einstein source X-9 and its relation to a shock-heated shell-like optical nebula in a tidal arm of the M81 group of interacting galaxies. Our ASCA observation of the source shows a flat and featureless X-ray spectrum well described by a multicolour disc blackbody model. The source most likely represents an optically thick accretion disc around an intermediate-mass black hole  ( M ∼102 M)  in its high/soft state, similar to other variable ultraluminous X-ray sources observed in nearby disc galaxies. Using constraints derived from both the innermost stable orbit around a black hole and the Eddington luminosity, we find that the black hole is fast-rotating and that its mass is between ∼80 M–1.5×102 M. The inferred bolometric luminosity of the accretion disc is ∼(1.1×1040 erg s−1)/(cos  i ). Furthermore, we find that the optical nebula is very energetic and may contain large amounts of hot gas, accounting for a soft X-ray component as indicated by archival ROSAT PSPC data. The nebula is apparently associated with X-9; the latter may be powering the former and/or they could be formed in the same event (e.g. a hypernova). Such a connection, if confirmed, could have strong implications for understanding both the birth of intermediate-mass black holes and the formation of energetic interstellar structures.  相似文献   

10.
We propose a model of magnetic connection (MC) of a black hole with its surrounding accretion disc based on large-scale magnetic field. The MC gives rise to transport of energy and angular momentum between the black hole and the disc, and the closed field lines pipe the hot matter evaporated from the disc, and shape it in the corona above the disc to form a magnetically induced disc–corona system, in which the corona has the same configuration as the large-scale magnetic field. We numerically solve the dynamic equations in the context of the Kerr metric, in which the large-scale magnetic field is determined by dynamo process and equipartition between magnetic pressure and gas pressure. Thus we can obtain a global solution rather than assuming the distribution of large-scale magnetic field beforehand. The main MC effects lie in three aspects. (1) The rotational energy of a fast-spinning black hole can be extracted, enhancing the dissipation in the accretion disc, (2) the closed field lines provide a natural channel for corona matter escaping from disc and finally falling into black hole and (3) the scope of the corona can be bounded by the conservation of magnetic flux. We simulate the high-energy spectra of this system by using Monte Carlo method, and find that the relative hardness of the spectra decreases as accretion rate or black hole spin a * increases. We fit the typical X-ray spectra of three black hole binaries  (GRO J1655−40, XTE 1118+480 and GX 339−4)  in the low/hard or very high state.  相似文献   

11.
We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM–Newton and Chandra observations. We use three models to describe the observed spectra: a power law, a multicolour disc (MCD) and a combination of these two models. We find that seven ULXs show a correlation between the luminosity L X and the photon index Γ. Furthermore, four out of these seven ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an   L X–Γ  anticorrelation. The spectra of four ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity–temperature diagrams. Finally, we show that the 'soft excess' reported for many of these ULXs at ∼0.2 keV seems to roughly follow a trend   L soft∝ T −3.5  when modelled with a power law plus a 'cool' MCD model. This is contrary to the   L ∝ T 4  relation that is expected from theory and what is seen for many accreting BHBs. The observed trend could instead arise from disc emission beamed by an outflowing wind around a  ∼10 M  black hole.  相似文献   

12.
Iron emission lines at 6.4–6.97 keV, identified with fluorescent Kα transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper, we present a recent XMM–Newton observation of the X-ray burster 4U 1705−44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high-velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; this feature appears to be smeared, and is compatible with being produced in the same region where the iron line is produced. From the line profile, we derive the physical parameters of the inner accretion disc with large precision. The line is identified with the Kα transition of highly ionized iron, Fe  xxv , the inner disc radius is   R in= 14 ± 2  R g  (where R g is the Gravitational radius,   GM / c 2  ), the emissivity dependence from the disc radius is   r −2.27±0.08  , the inclination angle with respect to the line of sight is   i = 39°± 1°  . Finally, the XMM–Newton spectrum shows evidences of other low-energy emission lines, which again appear broad and their profiles are compatible with being produced in the same region where the iron line is produced.  相似文献   

13.
We analysed simultaneous archival XMM–Newton and Rossi X-ray Timing Explorer observations of the X-ray binary and black hole candidate Swift J  1753.5−0127  . In a previous analysis of the same data, a soft thermal component was found in the X-ray spectrum, and the presence of an accretion disc extending close to the innermost stable circular orbit was proposed. This is in contrast with the standard picture in which the accretion disc is truncated at large radii in the low/hard state. We tested a number of spectral models and found that several of them fit the observed spectra without the need of a soft disc-like component. This result implies that the classical paradigm of a truncated accretion disc in the low/hard state cannot be ruled out by these data. We further discovered a broad iron emission line between 6 and 7 keV in these data. From fits to the line profile we found an inner disc radius that ranges between ∼6 and 16 gravitational radii, which can be in fact much larger, up to ∼250 gravitational radii, depending on the model used to fit the continuum and the line. We discuss the implications of these results in the context of a fully or partially truncated accretion disc.  相似文献   

14.
We compare standard models of accretion discs around black holes (BHs) that include the appropriate zero-torque inner boundary condition and relativistic effects on the emission and propagation of radiation. The comparison is performed adopting the multicolour disc blackbody model (MCD) as reference and looking for the parameter space in which it is in statistical agreement with 'more physical' accretion disc models. We find simple 'recipes' that can be used for adjusting the estimates of the physical inner radius of the disc, the BH mass and the accretion rate inferred using the parameters of the MCD fits. We applied these results to four ultraluminous X-ray sources for which MCD spectral fits of their X-ray soft spectral components have been published and find that, in three cases (NGC 1313 X-1, X-2 and M 81 X-9), the BH masses inferred for a standard disc around a Schwarzschild BH are in the interval  ∼100–200 M  . Only if the BH is maximally rotating are the masses comparable to the much larger values previously derived in the literature.  相似文献   

15.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

16.
In this paper, we explore the gravitomagnetic interaction of a black hole (BH) with a misaligned accretion disc to study BH spin precession and alignment jointly with BH mass M BH and spin parameter a evolution, under the assumption that the disc is continually fed, in its outer region, by matter with angular momentum fixed on a given direction     . We develop an iterative scheme based on the adiabatic approximation to study the BH–disc co-evolution: in this approach, the accretion disc transits through a sequence of quasi-steady warped states (Bardeen–Petterson effect) and interacts with the BH until the spin   J BH  aligns with     . For a BH aligning with a corotating disc, the fractional increase in mass is typically less than a few per cent, while the spin modulus can increase up to a few tens of per cent. The alignment time-scale     is of  ∼105–106 yr  for a maximally rotating BH accreting at the Eddington rate. BH–disc alignment from an initially counter-rotating disc tends to be more efficient compared to the specular corotating case due to the asymmetry seeded in the Kerr metric: counter-rotating matter carries a larger and opposite angular momentum when crossing the innermost stable orbit, so that the spin modulus decreases faster and so the relative inclination angle.  相似文献   

17.
We report the discovery of a new hysteresis effect in black hole X-ray binary state transitions, that of the near-infrared (NIR) flux (which most likely originates in the jets) versus X-ray flux. We find, looking at existing data sets, that the IR emission of black hole X-ray transients appears to be weaker in the low/hard state rise of an outburst than the low/hard state decline of an outburst at a given X-ray luminosity. We discuss how this effect may be caused by a shift in the radiative efficiency of the inflowing or outflowing matter, or variations in the disc viscosity or the spectrum/power of the jet. In addition we show that there is a correlation (in slope but not in normalization) between IR and X-ray luminosities on the rise and decline, for all three low-mass black hole X-ray binaries with well-sampled IR and X-ray coverage:   L NIR∝ L 0.5–0.7X  . In the high/soft state this slope is much shallower;   L NIR∝ L 0.1–0.2X  , and we find that the NIR emission in this state is most likely dominated by the viscously heated (as opposed to X-ray heated) accretion disc in all three sources.  相似文献   

18.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

19.
Using recently published estimates — based on high spatial resolution spectroscopy — of the mass M BH of nuclear black holes for a sample of nearby galaxies, we explore the dependence of galaxy nucleus emissivity at various wavelengths on M BH. We confirm an almost linear scaling of the black hole mass with the baryonic mass of the host spheroidal galaxy. A remarkably tight relationship is also found with both nuclear and total radio centimetric flux, with a very steep dependence of the radio flux on M BH ( P  ∝  M 2.5BH). The high-frequency radio power is thus a very good tracer of a supermassive black hole, and a good estimator of its mass. This, together with the lack of significant correlations with the low-energy X-ray and far-IR flux, supports the view that advection-dominated accretion is ruling the energy output in the low accretion rate regime. Using the tight dependence of total radio power on M BH and the rich statistics of radio emission of galaxies, we derive an estimate of the mass function of remnants in the nearby Universe. This is compared with current models of quasar and active galactic nucleus (AGN) activity and of the origin of the hard X-ray background (HXRB). As for the former, continuous long-lived AGN activity is excluded by the present data with high significance, whereas the assumption of a short-lived, possibly recurrent, activity pattern gives remarkable agreement. The presently estimated black hole mass function also implies that the HXRB has been produced by a numerous population (∼ 10−2 Mpc−3) of moderately massive ( M BH ∼ 107 M⊙) black holes.  相似文献   

20.
We present the results of the analysis of Rossi X-ray Timing Explorer ( RXTE ) observations of the new X-ray transient, SWIFT J1753.5−0127, during its outburst in 2005 July. The source was caught at the peak of the burst with a flux of 7.19e-09 erg s−1cm−2 in the 3–25 keV energy range and observed until it decreased by about a factor of 10. The photon index of the power-law component, which is dominant during the entire outburst, decreases from ∼1.76 to 1.6. However, towards the end of the observations the photon index is found to increase, indicating a softening of the spectra. The presence of an ultrasoft thermal component, during the bright phases of the burst, is clear from the fits to the data. The temperature associated with this thermal component is 0.4 keV. We believe that this thermal component could be due to the presence of an accretion disc. Assuming a distance of 8.5 kpc,   L X/ L Edd≃ 0.05  at the peak of the burst, for a black hole of mass  10 M  . The source is found to be locked in the low/hard state during the entire outburst and likely falls in the category of the X-ray transients that are observed in the low/hard state throughout the outburst. We discuss the physical scenario of the low/hard state outburst for this source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号