首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper presents an integrated analysis of GOES 6, 7 and neutron monitor observations of solar cosmic-ray event following the 1990 May 24 solar flare. We have used a model which includes particle injection at the Sun and at the interplanetary shock front and particle propagation through the interplanetary medium. The model does not attempt to simulate the physical processes of coronal transport and shock acceleration, therefore the injections at the Sun and at the shock are represented by source functions in the particle transport equation. By fitting anisotropy and angle-average intensity profiles of high-energy (>30 MeV) protons as derived from the model to the ones observed by neutron monitors and at GOES 6 and 7, we have determined the parameters of particle transport, the injection rate and spectrum at the source. We have made a direct fit of uncorrected GOES data with both primary and secondary proton channels taken into account.The 1990 May 24–26 energetic proton event had a double-peaked temporal structure at energies 100 MeV. The Moreton (shock) wave nearby the flare core was seen clearly before the first injection of accelerated particles into the interplanetary medium. Some (correlated with this shock) acceleration mechanism which operates in the solar corona at a height up to one solar radius is regarded as a source of the first (prompt) increase in GOES and neutron monitor counting rates. The proton injection spectrum during this increase is found to be hard (spectral index 1.6) at lower energies ( 30 MeV) with a rapid steepening above 300 MeV. Large values of the mean free path ( 1.8 AU for 1 GV protons in the vicinity of the Earth) led to a high anisotropy of arriving protons. The second (delayed) proton increase was presumably produced by acceleration/injection of particles by an interplanetary shock wave at height of 10 solar radii. Our analysis of the 1990 May 24–26 event is in favour of the general idea that a number of components of energetic particles may be produced while the flare process develops towards larger spatial/temporal scales.Visiting Associate from St. Petersburg State Technical University, St. Petersburg 195251, Russia.  相似文献   

2.
We present a sample of solar energetic particle events observed between November 18 and December 31, 1982 by the HELIOS 1, the VENERA 13, and IMP 8 spacecraft. During the entire time period all three spacecraft were magnetically connected to the western hemisphere of the Sun with varying radial and angular distances from the flares. Eleven proton events, all of them associated with interplanetary shocks, were observed by the three spacecraft. These events are visible in the low-energy (about 4 MeV) as well as the high-energy (30 MeV) protons. In the largest events protons were observed up to energies of about 100 MeV. The shocks were rather fast and in some cases extended to more than 90% east of the flare site. Assuming a symmetrical configuration, this would correspond to a total angular extent of some interplanetary shocks of about 180%. In addition, due to the use of three spacecraft at different locations we find some indication for the shape of the shock front: the shocks are fastest close to the flare normal and are slower at the eastern flank. For particle acceleration we find that close to the flare normal the shock is most effective in accelerating energetic particles. This efficiency decreases for observers connected to the eastern flank of the shock. In this case, the efficiency of shock acceleration for high-energy protons decreases faster than for low-energy protons. Observation of the time-intensity profiles combined with variations of the anisotropy and of the steepness of the proton spectrum allows one in general to define two components of an event which we term solar and interplanetary. We attempt to describe the results in terms of a radially variable efficiency of shock acceleration. Under the assumption that the shock is responsible not only for the interplanetary, but also for the solar component, we find evidence for a very efficient particle acceleration while the shock is still close to the Sun, e.g., in the corona. In addition, we discuss this series of strong flares and interplanetary shocks as a possible source for the formation of a superevent.  相似文献   

3.
The origin of relativistic solar protons during large flare/CME events has not been uniquely identified so far. We perform a detailed comparative analysis of the time profiles of relativistic protons detected by the worldwide network of neutron monitors at Earth with electromagnetic signatures of particle acceleration in the solar corona during the large particle event of 20 January 2005. The intensity – time profile of the relativistic protons derived from the neutron monitor data indicates two successive peaks. We show that microwave, hard X-ray, and γ-ray emissions display several episodes of particle acceleration within the impulsive flare phase. The first relativistic protons detected at Earth are accelerated together with relativistic electrons and with protons that produce pion-decay γ rays during the second episode. The second peak in the relativistic proton profile at Earth is accompanied by new signatures of particle acceleration in the corona within ≈1R above the photosphere, revealed by hard X-ray and microwave emissions of low intensity and by the renewed radio emission of electron beams and of a coronal shock wave. We discuss the observations in terms of different scenarios of particle acceleration in the corona.  相似文献   

4.
As a possible mechanism for particle acceleration in the impulsive phase of solar flares, a new particle acceleration mechanism in shock waves is proposed; a collisionless fast magnetosonic shock wave can promptly accelerate protons and electrons to relativistic energies, which was found by theory and relativistic particle simulation. The simultaneous acceleration of protons and electrons takes place in a rather strong magnetic field such that ce pe . For a weak magnetic field ( ce pe ), strong acceleration occurs to protons only. Resonant protons gain relativistic energies within the order of the ion cyclotron period (much less than 1 s for solar plasma parameters). The electron acceleration time is shorter than the ion-cyclotron period.  相似文献   

5.
Multispacecraft observations of energetic protons (E p 500 keV) were obtained by the APL/JHU instruments on board the IMP-7 and 8 spacecraft and the Voyager-1 and 2 deep space probes, in order to study the generation of solar flare Energetic Storm Particle (ESP) events at widely separated locations on the same shock front. These locations are presumably characterized, on the average, by different interplanetary magnetic field-shock front configurations, i.e. quasi-perpendicular (quasi-parallel) shocks for eastern (western) solar flare sites. The multispacecraft energetic proton observations show that substantial differences in the ESP proton intensity enhancements (defined as the ratio of intensity increases near the shock over the ambient solar proton population) are detected at these energies for locations on the shock front with wide heliolongitude separations. In particular, large ESP proton intensity enhancements are detected at locations on the shock front for which the solar flare site generating the shock is to the east of the spacecraft meridian, whereas only weak ESP events are observed at locations on the same shock for which the flare site is to the west of the spacecraft meridian. The results indicate that acceleration of ESP protons to E p 500 keV takes place exclusively at the quasi-perpendicular shock front domain, consistent with the shock drift acceleration mechanism (Armstrong et al., 1977).  相似文献   

6.
Taking into account the relativistic effect of a transverse high-frequency electromagnetic wave on the plasma electrons, the radiation properties of an accelerated supersonic soliton is studied, in the case when the acceleration of the soliton is due to an inhomogeneous density barrier of a wide range of applications. It is shown that the accelerated supersonic soliton radiates an ion-sound wave. The basic equations describing the dynamic behaviour of the high-frequency electromagnetic waves, as well as the emission of the ion-sound waves are formulated. The distribution of the perturbed concentration in the ion-sound wave is derived. The energy flux of the soliton + ion-sound system is estimated.  相似文献   

7.
Feffer  P. T.  Lin  R. P.  Slassi-Sennou  S.  McBride  S.  Primbsch  J. H.  Zimmer  G.  Pelling  R. M.  Pehl  R.  Madden  N.  Malone  D.  Cork  C.  Luke  P.  Vedrenne  G.  Cotin  F. 《Solar physics》1997,171(2):419-445
The HIgh-REsolution Gamma-ray and hard X-ray Spectrometer (HIREGS) consists of an actively shielded array of twelve liquid-nitrogen-cooled germanium detectors designed to provide unprecedented spectral resolution and narrow-line sensitivity for solar gamma-ray line observations. Two long-duration, circumpolar balloon flights of HIREGS in Antarctica (10–24 January, 1992 and 31 December, 1992–10 January, 1993) provided 90.9 and 20.4 hours of solar observations, respectively. During the observations, eleven soft X-ray bursts at C levels and above (largest M1.7) occurred, and three small solar hard X-ray bursts were detected by the Compton Gamma-Ray Observatory. HIREGS detected a significant increase above 30 keV in one. No solar gamma-ray line emission was detected. Limits on the 2.223-MeV line and the hard X-ray emission are used to estimate the relative contribution of protons and electrons to the energy in flares, and to coronal heating. For the 2.223-MeV line, the upper limit fluence is 0.8 ph cm-2 in the flares, and the upper limit flux is 1.8 × 10-4 ph s-1 cm-2 in the absence of flares. These limits imply that 6 × 1030 (2) protons above 30 MeV were accelerated in the flares, assuming standard photospheric abundances and a thick target model. The total energy contained in the accelerated protons >30 MeV is 4 × 1026 ergs, but this limit can be more than 1030 ergs if the spectrum extends down to 1 MeV. The upper limit on the total energy in accelerated electrons during the observed flares can also exceed 1030 ergs if the spectrum goes down to 7 keV. Quiet-Sun observations indicate that 1026erg s-1 are deposited by energetic protons >1 MeV, well below the1027 –1028 erg s-1 required for coronal heating, while <3 × 1027 erg s-1 are deposited by energetic electrons, which does not exclude the possibility of coronal heating by quiet-time accelerated electrons. The quiet-Sun observations also suggest that if protons stored in the corona are to supply the energy for flares, as suggested by Elliot (1964), the proton spectrum must extend down to at least 2 MeV. However, collisional losses at typical coronal-loop densities prevent those low-energy protons from being stored for 104 s. It therefore seems unlikely that the energy for flares could come from energetic protons stored over long periods.  相似文献   

8.
We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic fields during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion of the current sheet, which is driven by the converging flow toward the center of the magnetic arcade. We investigated a test particle motion in the strong electromagnetic fields derived from the MHD equations. It is shown that both protons and electrons can be promptly (within 1 s) accelerated to 70 and 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma-ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares.  相似文献   

9.
Acceleration of protons in a reconnecting current sheet (RCS), which forms as a consequence of filament eruption in the corona, is considered as a possible mechanism of generation of the relativistic particles during the late phase of solar flares. In order to explain the acceleration of protons and heavier ions up to several GeV in a time of < 0.1 s, the transverse electric field outside the RCS must be taken into account. Physically, this field is always present as a consequence of electric charge separation owing to the difference in the electron and proton masses. The new effect demonstrated in this paper is that the transverse electric field efficiently locks nonthermal ions in the RCS, thus allowing their acceleration by the direct electric field in the RCS. The mechanism considered may be useful in construction of a model for generation of relativistic ions in large gamma-ray/proton flares.  相似文献   

10.
Z. Švestka 《Solar physics》1970,13(2):471-489
Evidence is given that the particle acceleration in flares is confined to the initial phase of the flare development preceding the H flare maximum and lasting for less than 10 min. The impulsive acceleration process is confined to a relatively small limited volume of about 5 × 1027 cm3 in the region of highest magnetic gradient in the flare, and its size represents about 0.05 or less of the total extent of the hot condensation which produces the soft X-ray and gradual microwave bursts. About one in fifty particles in this volume is accelerated to energy exceeding 100 keV, the total particle density being 1010 cm–3. The accelerated electrons produce the impulsive hard X-ray burst, but synchrotron losses greatly reduce the number of relativistic electrons participating in the bremsstrahlung process. Protons above 20 MeV penetrate to the lowest chromosphere and upper photosphere and temporarily increase the temperature in the bombarded region. As the result a flash of continuous emission appears, which should be most expressive below 1527 Å. The associated white-light emission shows the bottom of the region where the impulsive acceleration process occurs.  相似文献   

11.
The paper summarizes observations of solar and space phenomena related to the McMath region Number 8461 which passed over the solar disk during the 1966 Proton Flare Project period, from August 21 to September 4, and produced two important solar particle events on August 28 and September 2. The most important results are reviewed and interpretation of some of them is suggested.Items of particular interest: Occurrence of proton-active regions when two or more rows of activity approach each other (Section 3). Possible stimulation of activity by magnetic fields of decaying regions that had been active before (4.2a, 5.1a). Significantly increased correlation of flares with X-ray bursts during the proton-active transit of the region (5.3b). Striking difference in the flare response in radio frequency range before and after August 26 (5.2b). Hardening of the X-rays (5.3a), increase in radio flux (5.2a), change in sunspot configuration (5.1c), and increased capability of the region for particle acceleration (5.1b, 5.2b), starting about three days prior to the proton flare. Clear evidence that some flares that occurred on or after August 26, but prior to the proton flare of August 28, already were sources of 1 MeV protons (5.2b, 8). Anomalous deficiency in metric component of radio bursts produced in the region (5.2c, 9.4d, 11.4b). Strong radio storm on meter waves immediately preceding the proton flare on August 28 (5.2a, 9.1b), coincident with preflare rising dark filament (9.1a) and slight preflare rise in flux of 1 MeV protons (10.2). Two phases of expansion (fast and slow) of the bright flare ribbons (9.2c). Coincidence of hard X-ray burst with the formation and fast separation of the bright flare ribbons. It is suggested that this is the time of particle acceleration in the flare (9.5b). Short-lived burst of UV radiation (9.6). Visible flare wave in the flare of August 28 (9.3b), and complexity of motions in this flare (9.4b). Suggested electron release by means of a blast wave (10.1a). Electron-proton splitting in the delayed shock-wave-associated maximum of the particle flux on August 29 (10.2c). First brightening of both proton flares in a similar position between the regions 8461 and 8459 (11.2c). Existence of a unique, low elevation coronal condensation three days after proton flare occurrences (7.2). Very strong flux of protons in energy range of the order of 100 MeV producing the largest PCA since July 1961, and unusually steep energy spectrum above 100 MeV in the flare of September 2 (12.2a, b, 12.4). Unusually long rise to the maximum flux, inconsistent with Burlaga's theory of anisotropic diffusion (12.2b). Interpretation of the undisturbed flux decay from September 2 to September 8 (12.2c). A corotating modulation phenomenon on September 8 (12.2d). Detection of medium nuclei, with He/M ratio 50 ± 11 (12.3a). Evidence against a purely velocity-dependent mode of particle propagation (12.3b). Electrons as the possible cause of the first PCA phase (12.4). Plasma disturbance due to permanent proton flux from the region (13.1). Electron injection into inner radiation belt during the geomagnetic storm associated with the September 2 flare (13.3).Section 14 brings a time scheme of the most important phenomena associated with the complex of activity and the active region in question, and some unsolved problems of particular interest are pointed out in Section 15.  相似文献   

12.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

13.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

14.
We present the analysis of observations of the August flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impact and by heating by the energetic electrons and protons. The region showed inverted polarity and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.We detected fast (5 s duration) small (1') flashes in 3835 at the footpoints of flux loops in the August 2 impulsive flare at 1838 UT, which may be explained by dumping of > 50 keV electrons accelerated in individual flux loops. The flashes show excellent time and intensity agreement with > 45 keV X-rays. In the less impulsive 2000 UT flare a less impulsive wave of emission in 3835 moved with the separating footpoints. The thick target model of X-ray production gives a consistent model for X-ray, 3835 and microwave emission in the 18:38 UT event.Spectra of the August 7 flare show emission 12 Å FWHM in flare kernels, but only 1 to 2 Å wide in the rest of the flare. The kernels thus produce most of the H emission. The total emission in H in the August 4 and August 7 flares was about 2 × 1030 erg. We belive this dependable value more accurate than previous larger estimates for great flares. The time dependence of total H emission agrees with radio and X-ray data much better than area measurements which depend on the weaker halo.Absorption line spectra show a large (6 km/s-1) photospheric velocity discontinuity across the neutral line, corresponding to sheared flow across that line.This work has been supported by NASA under NGR 05 002 034, NSF Atmospheric Sciences program under GA 24015, and AFCRL under FI9628-73-C-0085.  相似文献   

15.
We present a model of prompt high-energy particle acceleration during two-current-loop collisions. By investigating test proton and test electron motions in the electromagnetic field derived from the MHD equations, we found that high-energy particle acceleration occurs only in the case ofY-type, loop-loop collisions. The results depend strongly on the plasma and initial position of the test particle. When the plasma increases, the particle acceleration rate decreases. The particles near the edge of the collision region can be accelerated to higher energy than the ones inside it. It has been shown that both protons and electrons can be accelerated to 10 GeV within 0.001 s and 5 MeV within 10–6 s, respectively. In the case ofY-type loop-loop collisions, one may expect that high-energy gamma-ray and neutrons will be generated from interaction between high-energy particles and the low atmospheric plasma.  相似文献   

16.
In the quasi-linear theory of pitch angle scattering the power spectrum of magnetic field fluctuations is related to the shape of the pitch angle diffusion coefficient D(), the absolute value of the mean free path , and the rigidity dependence of the mean free path (R). We discuss these relations in detail during the solar particle event of 11 April, 1978 which was observed on HELIOS-2 at a distance of 0.49 AU from the Sun. Magnetic field measurements obtained during the time of the event are used as a basis for the layer model in which the method of particle trajectories in an actually measured field is used to simulate pitch angle diffusion. The values of D() and based on the trajectory simulation for 100 MeV protons (field approach) are compared with results obtained from solar proton data (particle approach) and with predictions from quasi-linear theory based on the additional assumption of the slab model for magnetic field fluctuations (QLT approach). The time of the event is characterized by a high level of field fluctuations, the observed mean free path of about 0.03 AU for 100 MeV protons is smaller than the average value near 1 AU. Results from the field and particle approaches agree surprisingly well. The remaining difference in the mean free path of about a factor of 2 could be due to tangential discontinuities which are measured by the magnetometer, but not seen by the real particles traveling along the average field. The results from the field and QLT approaches based on the same set of magnetic field measurements differ by about a factor of 4. One of the reasons for this discrepancy is that the conditions for resonance scattering are only marginally valid. In addition, the wave vectors representing Alfvén-type fluctuations may not be totally field aligned. This deviation from the slab model would cause an increase of the theoretically predicted mean free path and lead to better agreement with the other two approaches.  相似文献   

17.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

18.
Hamilton  B.  McCLEMENTS  K.G.  Fletcher  L.  Thyagaraja  A. 《Solar physics》2003,214(2):339-352
An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to -ray-emitting energies (>1 MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.  相似文献   

19.
A mechanism explaining the generation of the helium-enriched plasma-condensation colud (HAE-events) behind the front of shock waves associated with mass-ejecting flares is presented. The mechanism is based on the occurence of physical conditions, analogous to those in a Wilson cloud chamber in a magnetic field, behind the front of a flare-generated shock wave propagation out into interplanetary space. Consequently, if the solar atmosphere above the flare active region is saturated with ejected helium plasma, conditions are created for the forming of the helium-enriched plasma-condensation colud in the temperature-depressed region behind the shock wave front.  相似文献   

20.
T. Bai  R. Ramaty 《Solar physics》1976,49(2):343-358
Relativistic electrons in large solar flares produce gamma-ray continuum by bremsstrahlung and microwave emission by gyrosynchrotron radiation. Using observations of the 1972, August 4 flare, we evaluate in detail the electron spectrum and the physical properties (density, magnetic field, size, and temperature) of the common emitting region of these radiations. We also obtain information on energetic protons in this flare by using gamma-ray lines. From the electron spectrum, the proton-to-electron ratio, and the time dependences of the microwave emission, the 2.2 MeV line and the gamma-ray continuum, we conclude that in large solar flares relativistic electrons and energetic nuclei are accelerated by a mechanism which is different from the mechanism which accelerates 100 keV electrons in flares.Research supported by NASA Grant 21-002-316 at the University of Maryland, College Park.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号