首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Criteria for selecting continuous channel electron multipliers were applied to fifteen Mullard units without significantly affecting their overall lifetime. The gain fatigue vs accumulated counts, the change of the pulse height distribution during lifetime, the gain degradation vs count rates as well as the gain vs operating voltage and the resolution vs operating voltage have been investigated using a tritium source. The results provide several criteria to determine good, marginal and poor multipliers. From all tested devices 25% had a very low gain and did not operate satisfactory at the end of their lifetime investigations (4×109 accumulated counts). 40% of all devices could be classified as good multipliers. Their main characteristic was a gain recovery phenomenon after 3×109 accumulated counts with a progressive gain stabilizing. Multipliers classified as marginal exhibited some unexpected behaviour during the lifetime but a gain recovery phase and gain plateau region could be identified. Furthermore, the relative efficiency of the multipliers vs electron energy as a function of the operating voltage has been measured by using a near monoenergetic electron beam.Originally submitted to the journalSpace Science Instrumentation.  相似文献   

2.
We present results of simulations performed with the Geant4 software code of the effects of Galactic Cosmic Ray impacts on the photoconductor arrays of the PACS instrument. This instrument is part of the ESA-Herschel payload, which will be launched in 2008 and will operate at the Lagrangian L2 point of the Sun-Earth system. Both the Satellite plus the cryostat (the shield) and the detector act as source of secondary events, affecting the detector performance. Secondary event rates originated within the detector and from the shield are of comparable intensity. The impacts deposit energy on each photoconductor pixel but do not affect the behaviour of nearby pixels. These latter are hit with a probability always lower than 7%. The energy deposited produces a spike which can be hundreds times larger than the noise. We then compare our simulations with proton irradiation tests carried out for one of the detector modules and follow the detector behaviour under ‘real’ conditions.  相似文献   

3.
Near-infrared adaptive optics as well as fringe tracking for coherent beam combination in optical interferometry require the development of high-speed sensors. Because of the high speed, a large analog bandwidth is required. The short exposure times result in small signal levels which require noiseless detection. Both requirements cannot be met by state-of-the-art conventional CMOS technology of near-infrared arrays as has been attempted previously. A total of five near-infrared SAPHIRA 320 × 256 pixel HgCdTe eAPD arrays have been deployed in the wavefront sensors and in the fringe tracker of the VLTI instrument GRAVITY. The current limiting magnitude for coherent exposures with GRAVITY is mk = 19, which is made possible with ADP technology. New avalanche photo-diode array (APD) developments since GRAVITY include the extension of the spectral sensitivity to the wavelength range from 0.8 to 2.5 μm. After GRAVITY a larger format array with 512 × 512 pixels has been developed for both AO applications at the ELT and for long integration times. Since dark currents of <10−3 e/s have been demonstrated with 1Kx1K eAPD arrays and 2Kx2K eAPD arrays have already been developed, the possibilities and adaptations of eAPD technology to provide noiseless large-format science-grade arrays for long integration times are also discussed.  相似文献   

4.
The read noise, dark current, and pixel sizes of state-of-the-art infrared arrays for astronomy are presented. Considerations for instrument development utilizing infrared arrays are discussed, with emphasis on the background emission and expected sensitivity. A simple method of estimating the background emission on the JNLT and some applications to spectroscopy are presented.Paper presented at the Symposium on the JNLT and Related Engineering Developments, Tokyo, November 29–December 2, 1988.  相似文献   

5.
In less than a decade, infrared array detectors have revolutionized infrared astronomy. Most of us remember using single element photometers in the early eighties, yet today, most of us are using 256×256 pixel arrays. At this meeting we have heard of plans to fabricate 1024×1024 arrays in the near infrared. From one to one million pixels in such a short period of time is amazing. The new array technology has also stimulated the development of many varieties of infrared cameras and spectrometers. At the UCLA Infrared Imaging Detector Lab we have commissioned two near infrared imaging systems (KCam and Gemini) based on 256×256 arrays and a spectrometer design study is in progress for 1024×1024 arrays. Performance of these cameras on the telescope will be reported briefly.  相似文献   

6.
Gaseous Electron Multiplier detectors, or GEMs, show promise for use on space-based X-ray missions. Operating pressure strongly affects the gain of the detector and must be optimized for best performance. We have measured the gain characteristics of a GEM detector at various pressures below atmosphere using a mixture of Ar:CO2 with the goal of maximizing gain to push GEM capabilities to the lowest energies possible. This paper discusses our tests, results, and their implications for choosing a detector pressure. We found that at any operating pressure the detector voltage can be adjusted to achieve roughly the same maximum gain prior to the onset of electrical discharges. We also find that the gain varies substantially by spatial location across the detector, but this variation is insensitive to changes in pressure allowing it to be calibrated and corrected if necessary. The detector pressure can therefore be optimized in the interest of other performance parameters such as leak rate, window stress, power requirements, or quantum efficiency without concern for negatively affecting the gain. These results can inform the choice of operating pressure and voltage for GEMs used onboard future space missions.  相似文献   

7.
Introduced to astronomy less than a decade ago, infrared detector arrays have radically and forever changed astronomer's observational techniques, instruments, and telescope designs. This paper first examines the array technology development that caused this change, with emphasis on the 1- to 5-m band. Technology trends and projections for further development within the infrared industry are analyzed to assist astronomers in planning future instruments. This technology development is predicted to result in arrays with lower noise, greater well depth, response to a wider band of wavelengths, and, above all, much larger formats than arrays currently in use.  相似文献   

8.
We present new results of our UBV photometry for HD 179821=V1427 Aql, an F supergiant with an infrared excess, from 2000 to 2008. The semiregular low-amplitude (ΔV = 0. m 05−0. m 20) photometric variability of the star with a cycle period from 130 to 200 days is caused by pulsations, along with the instability of a variable stellar wind. V1427 Aql also exhibits a long-term trend in the brightness and colors that is probably attributable to a change in the stellar temperature as a result of mass loss episodes, which cause variations in the continuum formation level. We present the results of our JHKLM photometry for V1427 Aql in 1992–2008. We trace the trend in the near-infrared brightness, which agrees with the long-term variability in the V band. Based on broadband photometry, we have determined the color excess for V1427 Aql: E(BV) = 0.7. Based on low-resolution spectroscopy, we have estimated the stellar temperature and revealed variability of the Hα line caused by a change in the contribution from the emission component. The hypotheses of whether the star belongs to post-AGB objects or to massive yellow hypergiants are discussed.  相似文献   

9.
The possibility of using a trap with ultracold neutrons as a detector of dark matter particles with long-range forces is considered. The main advantage of the proposed method lies in the possibility of detecting a recoil energy of ∼10−7 eV. Constraints on the parameters of an interaction potential of the form φ (r) = ae r/b /r between dark matter particles and a neutron are presented at various dark matter densities on Earth. The assumption about the long-range interaction of dark matter particles and ordinary matter is shown to lead to a significant increase in the elastic scattering cross section at low energies. As a consequence, it becomes possible to capture and accumulate dark matter in the Earth’s gravitational field. The accumulated dark matter in the Earth’s gravitational field is roughly estimated. The first experimental constraints on the existence of dark matter with long-range forces on Earth are presented.  相似文献   

10.
The Canada-France-Hawaii Telescope (CFHT) has recently commissioned two facility infrared cameras for astronomical observations in the 1.0 to 2.5 micron region. These cameras use NICMOS3 256×256 pixel arrays fabricated from Hg:Cd:Te. We report here on array performance and discuss two unique features of these arrays, namely corner glow and residual images. We have developed techniques for reducing corner glow and a method of clearing residual image charge. We discuss our techniques and their side effects.  相似文献   

11.
A method is proposed for constructing a map of the electron density distribution in the galactic plane. Data on the dispersion measures DM of more than 1500 pulsars and their distances, found by an independent method, are used. The independent distances of the pulsars are estimated using an empirical relation of the form LP α β W δ between the radio luminosity L of the pulsars and their periods P, the rate of change . of their periods, and the half width W of their pulses. A map of the electron density distribution in the galactic plane within a ±400 pc layer is provided. __________ Translated from Astrofizika, Vol. 49, No. 2, pp. 277–287 (May 2006).  相似文献   

12.
The CdZnTe array detector is a new type of semiconductor detector being rapidly developed in recent years. It possesses a high spatial resolution and a high energy resolution, and it can work at room temperatures. This paper describes the physical properties and working principle of the CdZnTe array detector, as well as the manufacturing technology, including the chip pretreatment, passivation, ohmic electrode preparation, array template selection, and array packaging technology (micro-interconnection). For evaluating the perfor-mance of the detector, the authors have developed successfully a 4 pixel×4 pixel CdZnTe array and an 8 pixel×8 pixel CdZnTe array (with the thicknesses of 5 mm and 2 mm, the pixel size of 2 mm×2 mm, and the gaps of 0.15 mm and 0.2 mm, respectively) in cooperation with the partner. A multi-channel electronic readout system based on the ASIC (Application Specific Integrated Circuit) chip is devel-oped independently for the charge measurement of the 4 pixel×4 pixel CdZnTe array. The energy spectra and corresponding energy resolutions of the 16 pixels are obtained with the 137Cs radiative source, among them the best resolution is 4.8%@662 kev.  相似文献   

13.
The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 − 6. We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 − 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 − 8 allows detection of objects at contrasts as high as than 10 − 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.  相似文献   

14.
The Hughes Technology Center (HTC) has developed a family of high-performance Si:As impurity-band conduction (IBC) hybrid focal plane arrays (FPAs) optimized for low background applications: 58×62 pixels (76-m pitch), 128×128 pixels (75- and 120-m pitch), and 256×256 pixels (30-m pitch). These FPAs exhibit state-of-the-art low noise (<100e -) achieved by using readout arrays fabricated on HTC's CryoCMOS process line. The IBC detector arrays, also fabricated at HTC, exhibit high quantum efficiency over a wide waveband with operating temperature of 4–12 K. In addition, Hughes is developing a 256×256 Si:As IBC FPA for high background applications as well as a 512×512 FPA. Readout development includes design and fabrication of 256×256 readouts with large well size of 1×107 e - for the high-background FPA and 512×512 readouts with moderate well size (1×106 e -).  相似文献   

15.
Lisse  C. M.  Fernández  Y. R.  A'hearn  M. F.  Kostiuk  T.  Livengood  T. A.  Käufl  H. U.  Hoffmann  W. F.  Dayal  A.  Ressler  M. E.  Hanner  M. S.  Fazio  G. G.  Hora  J. L.  Peschke  S. B.  Grün  E.  Deutsch  L. K. 《Earth, Moon, and Planets》1997,78(1-3):251-257
We present infrared imaging and photometry of the bright, giant comet C/1995 O1 (Hale-Bopp). The comet was observed in an extended infrared and optical observing campaign in 1996–1997. The infrared morphology of the comet was observed to change from the 6 to 8 jet “porcupine” structure in 1996 to the “pinwheel” structure seen in 1997; this has implications for the position of the rotational angular momentum vector. Long term light curves taken at 11.3 μm indicate a dust production rate that varies with heliocentric distance as ∶ r−1.4. Short term light curves taken at perihelion indicate a rotational periodicity of 11.3 hours and a projected dust outflow speed of ∶ 0.4 km s−1. The spectral energy distribution of the dust on October 31, 1996 is well modeled by a mixture of 70% silicaceous and 30% carbonaceous non-porous grains, with a small particle dominated size distribution like that seen for comet P/Halley (McDonnell et al., 1991), an overall dust production rate of 2 × 105 kg s−1, a dust-to-gas ratio of ∶5, and an albedo of 39%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We present the results of our infrared observations of WR 140 (=V1687 Cyg) in 2001–2010. Analysis of the observations has shown that the J brightness at maximum increased near the periastron by about 0 m .3; the M brightness increased by ∼2 m in less than 50 days. The minimum J brightness and the minimum L and M brightnesses were observed 550–600 and 1300–1400 days after the maximum, respectively. The JHKLM brightness minimum was observed in the range of orbital phases 0.7–0.9. The parameters of the primary O5 component of the binary have been estimated to be the following: R(O5) ≈ 24.7R , L(O5) ≈ 8 × 105 L , and M bol(O5) ≈ −10 m . At the infrared brightness minimum, T g ∼ 820–880 K, R g ≈ 2.6 × 105 R , the optical depth of the shell at 3.5 μm is ∼5.3 × 10−6, and its mass is ≈1.4 × 10−8 M . At the maximum, the corresponding parameters are ∼1300 K, 8.6 × 104 R , ∼2 × 10−4, and ∼6 × 10−8 M ; the mean rate of dust inflow (condensation) into the dust structure is ∼3.3 × 10−8 M yr−1. The mean escape velocity of the shell from the heating source is ∼103 km s−1 and the mean dispersal rate of the shell is ∼1.1 × 10−8 M yr−1.  相似文献   

17.
Jordanova  V.K.  Thorne  R.M.  Farrugia  C.J.  Dotan  Y.  Fennell  J.F.  Thomsen  M.F.  Reeves  G.D.  McComas  D.J. 《Solar physics》2001,204(1-2):361-375
We study the development of the terrestrial ring current during the time interval of 13–18 July, 2000, which consisted of two small to moderate geomagnetic storms followed by a great storm with indices Dst=−300 nT and Kp=9. This period of intense geomagnetic activity was caused by three interplanetary coronal mass ejecta (ICME) each driving interplanetary shocks, the last shock being very strong and reaching Earth at ∼ 14 UT on 15 July. We note that (a) the sheath region behind the third shock was characterized by B z fluctuations of ∼35 nT peak-to-peak amplitude, and (b) the ICME contained a negative to positive B z variation extending for about 1 day, with a ∼ 6-hour long negative phase and a minimum B z of about −55 nT. Both of these interplanetary sources caused considerable geomagnetic activity (Kp=8 to 9) despite their disparity as interplanetary triggers. We used our global ring current-atmosphere interaction model with initial and boundary conditions inferred from measurements from the hot plasma instruments on the Polar spacecraft and the geosynchronous Los Alamos satellites, and simulated the time evolution of H+, O+, and He+ ring current ion distributions. We found that the O+ content of the ring current increased after each shock and reached maximum values of ∼ 60% near minimum Dst of the great storm. We calculated the growth rate of electromagnetic ion cyclotron waves considering for the first time wave excitation at frequencies below O+ gyrofrequency. We found that the wave gain of O+ band waves is greater and is located at larger L shells than that of the He+ band waves during this storm interval. Isotropic pitch angle distributions indicating strong plasma wave scattering were observed by the imaging proton sensor (IPS) on Polar at the locations of maximum predicted wave gain, in good agreement with model simulations.  相似文献   

18.
The molecular gas mass in nearby galaxies is generally estimated using 12CO(1-0) line intensities and assuming the X conversion factor between I(CO) and N(H2) measured in the solar neighborhood. It is however known that this X conversion factor is not universal since it changes with metallicity, cosmic ray density and UV radiation field. Far-IR data in the spectral range 100-1000 μm can be used to estimate the molecular gas content of late-type galaxies in an independent way of CO line measurements once a metallicity-dependent dust to gas ratio is assumed, allowing a direct estimate of X. This exercise is presented here for a large sample of galaxies with available multifrequency data. X spans from ∼ 1020 mol cm-2 (K km s-1)-1 in giant spirals to ∼ 1021 mol cm-2 (K km s-1)-1 in dwarf irregulars. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

19.
Specifications of a new Apogee Alta U47 CCD camera mounted at the Kyiv meridian axial circle (MAC) are presented. The camera is based on the 1024 × 1024 pxl e2v CCD47-10 with pixel sizes of 13 × 13 μm. Observations are carried out in the scan-drift mode with an effective exposure time of 77 s for equatorial stars. The MAC photometric system answers the standard Johnson V band, the MAC limiting magnitude V is 17 m . The test MAC observations of 2009 give positional accuracy and V magnitude errors equal to approximately 0.1″ and 0.09 m , respectively, for Tycho-2 stars. The telescope is used for observations of equatorial stars with the purpose of detecting their positions, proper motion, and brightness.  相似文献   

20.
We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We employ high-resolution X-ray spectra observed by the Si detector of the “Solar X-ray Spectrometer” (SOXS). The SOXS onboard the Indian GSAT-2 spacecraft was launched by the GSLV-D2 rocket on 8 May 2003. Firstly we model the spectral evolution of the X-ray line and continuum emission flux F(ε) from the flare by integrating a series of isothermal plasma flux. We find that the multi-temperature integrated flux F(ε) is a power-law function of ε with a spectral index (γ)≈−4.65. Next, based on spectral-temporal evolution of the flares we find that the emission in the energy range E=4 – 15 keV is dominated by temperatures of T=12 – 50 MK, while the multi-thermal power-law DEM index (δ) varies in the range of −4.4 and −5.7. The temporal evolution of the X-ray flux F(ε,t) assuming a multi-temperature plasma governed by thermal conduction cooling reveals that the temperature-dependent cooling time varies between 296 and 4640 s and the electron density (n e) varies in the range of n e=(1.77 – 29.3)×1010 cm−3. Employing temporal evolution technique in the current study as an alternative method for separating thermal from nonthermal components in the energy spectra, we measure the break-energy point, ranging between 14 and 21±1.0 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号