首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
As part of a large spectroscopic survey of   z > 5  Lyman break galaxies (LBGs), we have identified a single source which is clearly hosting an active galactic nucleus (AGN). Out of a sample of more than 50 spectroscopically confirmed R -band dropout galaxies at   z ∼ 5  and above, only J104048.6−115550.2 at   z = 5.44  shows evidence for a high ionization potential emission line indicating the presence of a hard ionizing continuum from an AGN. Like most objects in our sample the rest-frame-UV spectrum shows the UV continuum breaking across a Lyα line. Uniquely within this sample of LBGs, emission from N  v is also detected, a clear signature of AGN photoionization. The object is spatially resolved in Hubble Space Telescope ( HST ) imaging. This, and the comparatively high Lyα/N  v flux ratio indicates that the majority of the Lyα (and the UV continuum longward of it) originates from stellar photoionization, a product of the ongoing starburst in the LBG. Even without the AGN emission, this object would have been photometrically selected and spectroscopically confirmed as a Lyman break in our survey. The measured optical flux  ( I AB= 26.1)  is therefore an upper limit to that from the AGN and is of order 100 times fainter than the majority of known quasars at these redshifts. The detection of a single object in our survey volume is consistent with the best current models of high redshift AGN luminosity function, providing a substantial fraction of such AGN is found within luminous starbursting galaxies. We discuss the cosmological implications of this discovery.  相似文献   

3.
4.
We report optical, radio and X-ray observations of a new distant blazar, PMN J0525−3343, at a redshift of 4.4. The X-ray spectrum measured from ASCA and BeppoSAX flattens below a few keV, in a manner similar to the spectra of two other z >4 blazars, GB 1428+4217 ( z =4.72) reported by Boller et al. and RX J1028.6−0844 ( z =4.28) reported by Yuan et al. The spectrum is well fitted by a power-law continuum which either is absorbed or breaks at a few keV. An intrinsic column density corresponding to 2×1023 H‐atoms cm−2 at solar abundance is required by the absorption model. This is however a million times greater than the neutral hydrogen, or dust, column density implied by the optical spectrum, which covers the rest-frame ultraviolet emission of the blazar nucleus. We discuss the problems raised and suggest that, unless there is intrinsic flattening in the spectral distribution of the particles/seed photons producing X-rays via inverse Compton scattering, the most plausible solution is a warm absorber close to the active nucleus.  相似文献   

5.
Results of ASCA and ROSAT observations of the Seyfert 1 galaxy RX J0437.4−4711 are presented. The X-ray continuum spectrum can be described by the sum of a power law with photon index 2.15 ± 0.04 and a soft emission component characterized by a blackbody with temperature 29 ± 2 eV. The total luminosity of the soft component is larger than that of the power-law component if the power law is cut off around a few hundred keV. A weak absorption edge with τ = 0.26 ± 0.13 at the rest-frame energy of E  = 0.83 ± 0.05 keV and an Fe Kα line with EW = 430 ± 220 eV at an energy E  = 6.47 ± 0.15 keV are also detected. The X-ray flux showed a 47 per cent increase between two ASCA observations 4 months apart, but no spectral variability was seen. We argue that reprocessing of the hard X-ray emission cannot produce all the soft X-ray emission, since the total luminosity of the soft component is larger than that of the integrated power-law component. Similarities with some stellar black hole candidates are briefly discussed.  相似文献   

6.
We present ASCA data on RE J2248−511, extending existing optical and soft X-ray coverage to 10 keV, and monitoring the soft component. These data show that, despite a very strong ultrasoft X-ray excess below 0.3 keV and a soft 0.3–2 keV spectral index in earlier ROSAT data, the hard X-ray spectrum ( α ∼−0.8; 0.6–10 keV) is typical of type 1 active galactic nuclei (AGN), and the soft component has since disappeared. Optical data taken at two different epochs show that the big blue bump is also highly variable. The strength of the ultrasoft X-ray component and the extreme variability in RE J2248−511 are reminiscent of the behaviour observed in many narrow line Seyfert 1s (NLS1s). However, the high-energy end of the ROSAT spectrum, the ASCA spectrum and the Balmer line full widths at half maximum of ∼3000 km s−1 in RE J2248−511 are typical of normal Seyfert 1 AGN.
The change in the soft X-ray spectrum as observed in the ROSAT and ASCA data is consistent with the behaviour of Galactic Black Hole Candidates (GBHCs) as they move from a high to a low state, i.e. a fall in the ultrasoft component and a hardening of the X-ray continuum. This GBHC analogy has also been proposed for NLS1s. Alternatively, the variability may be caused by opacity changes in a hot, optically thin corona which surrounds a cold, dense accretion disc; this was first suggested by Guainazzi et al. for 1H 0419−577, an object which shows remarkably similar properties to RE J2248−511.  相似文献   

7.
8.
We have obtained an H2 v =1–0 S(1) image of a merging galaxy system, NGC 6090, by using a Fabry–Perot imager. The H2 emission originates between the double nuclei of pre-merger galaxies, and exhibits an arc-like or ring-like structure almost connecting the double nuclei. This structure is similar to that suggested for Arp 220 from the velocity field measured by CO radio emission. The separation of the double nuclei in NGC 6090 is 5–6 arcsec, corresponding to a projected distance of 3–4 kpc. This is much larger than that of Arp 220 and suggests that the molecular gas distribution can form an organized shape between the nuclei, such as a ring, in a rather early phase of merging.  相似文献   

9.
10.
11.
12.
13.
14.
We present measurements of several near-infrared emission lines from the nearby galaxy NGC 253. We have been able to measure four H2 lines across the circumnuclear starburst, from which we estimate the ortho- to para- ratio of excited H2 to be ∼2. This indicates that the bulk of the H2 emission arises from photodissociation regions (PDRs), rather than from shocks. This is the case across the entire region of active star formation.
As the H2 emission arises from PDRs, it is likely that the ratio of H2 to Brγ (the bright hydrogen recombination line) is a measure of the relative geometry of O and B stars and PDRs. Towards the nucleus of NGC 253 the geometry is deduced to be tightly clustered O and B stars in a few giant H  II regions that are encompassed by PDRs. Away from the nuclear region, the geometry becomes that of PDRs bathed in a relatively diffuse ultraviolet radiation field.
The rotation curves of 1–0 S(1) and Brγ suggest that the ionized gas is tracing a kinetic system different from that of the molecular gas in NGC 253, particularly away from the nucleus.  相似文献   

15.
16.
We present an analysis of the orientations of 1433 galaxies found in the region  15h 48m≤α(2000) ≤ 19h 28m, −68°≤δ(2000) ≤−62°  . In this region we investigated three Abell clusters (S0794, S0797, S0805) of richness Class 0 and the Triangulum Australis cluster. Our aim is to examine non-random effects in galaxy orientations in clusters. In addition, we classified the investigated galaxies into subsamples on the basis of their axial ratio, major diameter and morphology. The spin vector orientations of total galaxies in the investigated region is found to be random. No preferred orientation is found in the clusters. We could not note any morphological dependence of the galaxy orientations in our samples. No preferred orientations can be seen for the spiral galaxies. The morphologically unidentified galaxies, galaxies having major diameters of <47 arcsec, and the nearly edge-on galaxies  ( b / a < 0.5, 0.4 < b / a ≤ 0.5)  show anisotropy: spin vectors of galaxies tend to be oriented perpendicular to the Local Supercluster plane and spin vector projections tend to point radially with respect to the Virgo cluster centre.  相似文献   

17.
We report on new X-ray outbursts observed with Swift from three Supergiant Fast X-ray Transients (SFXTs): XTE J1739−302, IGR J17544−2619 and IGR J08408−4503. XTE J1739−302 underwent a new outburst on 2008 August 13, IGR J17544−2619 on 2008 September 4 and IGR J08408−4503 on 2008 September 21. While the XTE J1739−302 and IGR J08408−4503 bright emission triggered the Swift /Burst Alert Telescope, IGR J17544−2619 did not, thus we could perform a spectral investigation only of the spectrum below 10 keV. The broad-band spectra from XTE J1739−302 and IGR J08408−4503 were compatible with the X-ray spectral shape displayed during the previous flares. A variable absorbing column density during the flare was observed in XTE J1739−302 for the first time. The broad-band spectrum of IGR J08408−4503 requires the presence of two distinct photon populations, a cold one (∼0.3 keV) most likely from a thermal halo around the neutron star and a hotter one (1.4–1.8 keV) from the accreting column. The outburst from XTE J1739−302 could be monitored with a very good sampling, thus revealing a shape which can be explained with a second wind component in this SFXT, in analogy to what we have suggested in the periodic SFXT IGR J11215−5952. The outburst recurrence time-scale in IGR J17544−2619 during our monitoring campaign with Swift suggests a long orbital period of ∼150 d (in a highly eccentric orbit), compatible with what previously observed with INTEGRAL .  相似文献   

18.
19.
We present results on the identification of the optical counterpart of an ultrasoft X-ray source discovered with ROSAT . Two optical candidates – a galaxy and a star – are found within the error circle of the X-ray source position. Optical spectroscopy of the two candidates reveals that (a) the galaxy is a narrow-line Seyfert type 1 galaxy, and (b) the star is a late A-type or an early F-type. The F x F v ratio is too high for the star to be the counterpart of the X-ray source, but consistent with that for an active galaxy. Although higher-resolution X-ray imaging of the region is needed to definitely settle the question of the counterpart of the X-ray source, the narrow-line Seyfert 1 galaxy is the best candidate. The spectral properties of the newly discovered narrow-line Seyfert 1 galaxy are also presented, including its extreme X-ray power-law spectral index of Γ≥4.  相似文献   

20.
We perform a combined X-ray and strong lensing analysis of RX J1347.5−1145, one of the most luminous galaxy clusters at X-ray wavelengths. We show that evidence from strong lensing alone, based on published Very Large Telescope (VLT) and new Hubble Space Telescope ( HST ) data, strongly argues in favour of a complex structure. The analysis takes into account arc positions, shapes and orientations, and is done thoroughly in the image plane. The cluster inner regions are well fitted by a bimodal mass distribution, with a total projected mass of   M tot= (9.9 ± 0.3) × 1014 M  h −1  within a radius of 360 kpc  h −1 (1.5 arcmin). Such a complex structure could be a signature of a recent major merger as further supported by X-ray data. A temperature map of the cluster, based on deep Chandra observations, reveals a hot front located between the first main component and an X-ray emitting south-eastern subclump. The map also unveils a filament of cold gas in the innermost regions of the cluster, most probably a cooling wake caused by the motion of the cD inside the cool core region. A merger scenario in the plane of the sky between two dark matter subclumps is consistent with both our lensing and X-ray analyses, and can explain previous discrepancies with mass estimates based on the virial theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号