首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since about ten years coordinated programs of photoelectric observations of asteroids are carried out to derive rotation rates and light curves. Quite a number of those asteroids exhibit features in their light curves, with similar characteristics as variable stars and especially eclipsing binaries. This would allow also an interpretation that there might be an evidence for the binary nature of some asteroids, based on observational hints. A few examples are given and a list of indications for the possible binary nature of asteroids, based on their light curve features, is presented.Paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia, 3–7 June, 1983.  相似文献   

2.
Recent dynamical studies have identified pairs of asteroids that reside in nearly identical heliocentric orbits. Possible formation scenarios for these systems include dissociation of binary asteroids, collisional disruption of a single parent body, or spin-up and rotational fission of a rubble-pile. Aside from detailed dynamical analyses and measurement of rotational light curves, little work has been done to investigate the colors or spectra of these unusual objects. A photometric and spectroscopic survey was conducted to determine the reflectance properties of asteroid pairs. New observations were obtained for a total of 34 individual asteroids. Additional photometric measurements were retrieved from the Sloan Digital Sky Survey Moving Object Catalog. Colors or spectra for a total of 42 pair components are presented here. The main findings of this work are: (1) the components in the observed pair systems have the same colors within the uncertainties of this survey, and (2) the color distribution of asteroid pairs appears indistinguishable from that of all Main Belt asteroids. These findings support a scenario of pair formation from a common progenitor and suggest that pair formation is likely a compositionally independent process. In agreement with previous studies, this is most consistent with an origin via binary disruption and/or rotational fission.  相似文献   

3.
P. Pravec  A.W. Harris 《Icarus》2007,190(1):250-259
We compiled a list of estimated parameters of binary systems among asteroids from near-Earth to trojan orbits. In this paper, we describe the construction of the list, and we present results of our study of angular momentum content in binary asteroids. The most abundant binary population is that of close binary systems among near-Earth, Mars-crossing, and main belt asteroids that have a primary diameter of about 10 km or smaller. They have a total angular momentum very close to, but not generally exceeding, the critical limit for a single body in a gravity regime. This suggests that they formed from parent bodies spinning at the critical rate (at the gravity spin limit for asteroids in the size range) by some sort of fission or mass shedding. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a candidate to be the dominant source of spin-up to instability. Gravitational interactions during close approaches to the terrestrial planets cannot be a primary mechanism of formation of the binaries, but it may affect properties of the NEA part of the binary population.  相似文献   

4.
This is a continuation of a previous paper which appeared in this journal (Demircan, 1980b) and aims at ascertaining some other relations between the integral transforms of the light curves of eclipsing binary systems. The appropriate use of these relations should facilitate the numerical computations for an analysis of eclipsing binary light curves by different Fourier techniques.  相似文献   

5.
New BV light curves and photometric solutions of the W UMa-type contact binary CU Tau are presented in this paper. From the observations, four times of minimum light were determined and from the present times of minimum light and those collected from the references, a new ephemeris was formed. The O-C diagram of the period change suggests that the orbital period of the system seems to vary. While the B light curve seems to be symmetric, the V light curve appears to exhibit an O'Connell effect, with Maximum I being 0.015 mag. brighter than Maximum II. The light curves are analyzed by means of the latest version of the Wilson-Devinney code. The results show that CU Tau is A-subtype W UMa contact binary with a small mass ratio q = 0.180. The asymmetry of the light curve is explained by star spot models.  相似文献   

6.
New light curves and photometric solutions of the contact binary AZ Vir are presented in this paper. The light curves appear to exhibit a typical O'Connell effect, with Maximum I being 0.021 mag (V) and 0.023 mag (B) brighter than Maximum II, respectively. From the observations, six times of minimum light were determined and from the present times of minimum light and those collected from the references, the light elements of the system were improved. The light curves were analyzed by means of the Wilson‐Devinney program. The results suggest that AZ Vir is a W‐subtype contact binary with a mass ratio of q = 0.623(2). The asymmetry of the light curves is explained by star spot models. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Recent occultation data and an analysis of some photometric lightcurves have shown the possible existence of asteroidal binary systems.A simple geometrical model taking into account mutual shadowing effects shows some peculiar features of the lightcurve which can be recovered in several previously observed objects; therefore the hypothesis of a relatively high frequency of binary asteroids should be seriously considered.On the other hand, while the rotational period distribution of large asteroids (D>200 km) is sharply peaked at about 5–8 hours, the surprisingly higher dispersion towards longer periods for intermediate size objects (50<D<150 km) could be connected with a larger probability of binary nature within this class.From a theoretical point of view, the collisional fragmentation of asteroids could originate gravitationally bound fragments, with a tidal transfer of rotational into orbital angular momentum, causing a rapid synchronization of the system. This kind of processes could more easily occur for intermediate objects since: (a) for large ones, very massive colliding bodies are needed for fragmentation, that means a very rare event; (b) for smaller asteroids, solid state interactions are stronger than the gravitational ones, so that a breakage probably causes a complete disruption of the gravitational binding. Further collisional events could disintegrate some systems, so that the present frequency of binary asteroids could be lower than that of the objects whose rotational period was increased by such processes.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

8.
The results of photometric observations of (87) Sylvia, 2006 VV2, (90) Antiopa, and (39) Laetitia asteroids in 2006–2008 are presented. The specific features of light curves are considered for each object. In particular, for asteroid (87) Sylvia, possible mutual phenomena in this triple system are identified. Asteroid 2006 VV2 manifests a strong dependence of the light curve on the filter color, which testifies to the presence of inhomogeneities on its surface. The previously unknown brightness variation period with a duration of about three days was obtained for this asteroid. For binary asteroid (90) Antiopa, the strong dependence of its brightness on the phase angle was noticed; this may testify to the very flattened shape of its components. Considerable time variations of the shape of the light curve for asteroid (39) Laetitia may testify either to its complex shape or to its binary character.  相似文献   

9.
A rotating mass dipole can be used to understand the dynamical behaviors around elongated asteroids as well as binary asteroids. In this paper an improved dipole model with oblateness in both primaries is investigated. The dynamical equations of a particle around the improved model are first derived by introducing the oblateness coefficients. The characteristic equations of equilibrium points are obtained, resulting in the emergence of new equilibria in the equatorial plane and the plane xoz depending on the shape of the spheroid. Numerical simulations are performed to illustrate the distribution of these equilibrium points. Significant influence from the oblateness of the primaries on the topological structure is also analyzed via zero-velocity curves.  相似文献   

10.
Milo Wolff 《Icarus》1980,44(3):780-792
Results are reported of a computer calculation of the scattering of light from porous, particulate surfaces such as those of the Moon, asteroids, and airless planets. The scattered-light intensity and polarization are computed as a function of phase angle, and plots are made corresponding to the observed empirical rules for deducing albedo from the slope, maximum, and minimum of polarization curves. The approximate linearity of these rules on a log-log plot is confirmed for most solar system objects. The linearity is due to the similarity of the real indices of refraction of solar system soils. The theory shows that the albedo vs polarization plots correspond directly to a plot, in two dimensions, of the real vs imaginary index of refraction of these soils, using curved axes. This new information provides a straightforward method of measuring optical and structural properties of the major soil constituents leading to mineral identification. The theory is based upon geometric optics with an estimated error of 5 to 10% which agrees reasonably well with available measurements. A comparison is made with 30 asteroids and some moons. The soils of these bodies appear similar to that of the Earth, with some interesting exceptions.  相似文献   

11.
We present simulations on the asteroid photometric data that will be provided by the Pan-STARRS (Panoramic Survey Telescope and Rapid Response System). The simulations were performed using realistic shape and light-scattering models, random orientation of spin axes, and rotation periods in the range 2–24 h. We show that physical models of asteroids can be reconstructed from this data with some limitations (possible multiple pole solutions). We emphasize the potential of sparse photometric data to produce models of a large number of asteroids within the next decade and we outline further tests with fast and slow rotators, tumblers, and binary asteroids.  相似文献   

12.
Despite the same multiplicity of lenses and sources, the frequency of detection of binary source events is relatively very low compared with that of binary lens events. Dominik pointed out that the rarity of binary source events is caused mainly by the large difference in amplification between the component stars. In this paper, we determine that the fraction of events with similar source star amplifications is as large as ∼8 per cent, and thus show that the very low detection rate for binary source events cannot be explained by this effect alone. By carrying out realistic simulations of binary source events, we find that a significant number of binary source events are additionally missed from detection for various other reasons. First, if the flux ratio between the component stars is very large, the light curve of the bright star is hardly affected by the light from the faint star. Secondly, if the separation is too small, the binary source stars behave like a single star, making it difficult to separate the binary source event from a single source event. Finally, although the probability of detecting binary source events increases as the source separation increases, some fraction of binary source events will still be missed because the light curves of these events will mimic those of single source events with longer time-scales and larger values of the impact parameter.  相似文献   

13.
Edward F. Tedesco 《Icarus》1979,40(3):375-382
Evidence is presented indicating that the Flora family is of common origin. The distribution of proper elements and physical properties of Flora-family asteroids are compared with those of families believed to have formed from the catastrophic disruption of parent bodies. Differences in these orbital and physical properties suggest that the creation of the Flora family was more complex. Available evidence concerning the Flora family, together with recent models for the collisional evolution of the asteroids, suggests that this family may have originated from a binary or multiple asteroid. A mechanism in which the Flora family may have been produced by the disruption of a former major satellite of 8 Flora is presented and compared with other possible modes of formation.  相似文献   

14.
Thermal observations of large asteroids at millimeter wavelengths have revealed high amplitude rotational lightcurves. Such lightcurves are important constraints on thermophysical models of asteroids, and provide unique insight into the nature of their surface and subsurface composition. A better understanding of asteroid surfaces provides insight into the composition, physical structures, and processing history of these surviving remnants from the formation of our solar system. In addition, detailed observations of the larger asteroids, accompanied by thermophysical models with appropriate temporal and spatial resolution, promise to decrease uncertainties in their flux predictions. Of particular interest are the near-Earth objects, which can be observed at large phase angles, permitting better assessment of the thermal response of their unilluminated surfaces. The high sensitivity of ALMA will enable us to detect many small bodies in all the major groups, to obtain lightcurves for a large sample of main-belt and near-Earth objects, to resolve the surfaces of some large objects, and to separate the emission from primary and secondary objects in binary pairs. In addition to the science goals of asteroid studies, these bodies may also prove useful operationally because those with known shapes and well-characterized lightcurves could be employed for flux calibration by ALMA and other high frequency instruments.  相似文献   

15.
A semi-automated photometric telescope built at the Skalnate Pleso Observatory is described. In December 2000, the 0.3-m f/5 Zeiss astrograph was replaced by a 0.61-m f/4.3 mirror telescope equipped with a CCD camera. The observing programme is created to conform to the photometry of asteroids which are suspected to be of binary nature; photometry of NEAs and MBAs; a long-term photometry for theoretical modelling of the shape of asteroids; and photometry and astrometry of active comets and asteroids. Some results concerning the binary character of the asteroids are described in the paper.  相似文献   

16.
The ellipsoid shape model plays an important role in physical research on asteroids. However, its symmetric structure cannot practically simulate real asteroids. This article applies a general shape model, named the cellinoid, instead of the ellipsoid model to simulate the asymmetric shape of asteroids. The cellinoid shape model consists of eight octants of ellipsoids having different semi-axes, with the constraint that adjacent octants must have two equal semi-axes in common. Totally, the shape of the cellinoid model is controlled by six parameters, not three as in the case of the shape of the ellipsoid. Using this shape model, the brightness of asteroids observed from the Earth can be fitted numerically by the surface triangularization of the cellinoid. The Levenberg–Marquardt algorithm is also employed here to solve a nonlinear minimization problem. Owing to the asymmetric shape of the cellinoid, the physical parameters of asteroids, such as the rotation period and pole orientation, can be fitted more accurately than in the case of the ellipsoid model. Finally, this is confirmed numerically by applying the shape to both synthetic light curves and real light curves of asteroids. Additionally, the center of mass and moment of inertia of the cellinoid are analyzed explicitly.  相似文献   

17.
We present the results of our numerical simulations of the cyclic brightness modulation in young binary systems with eccentric orbits and low-mass secondary components. We suggest that the binary components accrete matter from the remnants of the protostellar cloud, with the main accretor (according to current models) being the low-mass component. The brightness variations of the primary are attributable to the periodic extinction variations on the line of sight caused by the disk wind from the secondary and by the common envelope produced by this wind. The distribution of matter in the envelope was calculated in the ballistic approximation. When calculating the optical effects produced by the dust component of the disk wind, we adopted the dust-to-gas mass ratio of 1:100 characteristic of the interstellar medium and the optical parameters of the circumstellar dust typical of young stars. Our calculations show that the theoretical light curves for binaries with elliptical orbits exhibit a wider variety of shapes than those for binaries with circular orbits. In this case, the parameters of the photometric minima (their depth, duration, and shape of the light curve) depend not only on the disk-wind parameters and the orbital inclination of the binary to the line of sight, but also on the longitude of the periastron. We investigate the modulation of the scattered radiation from the common envelope with orbital phase in the single-scattering approximation. The modulation amplitude is shown to be at a maximum when the system is seen edge-on and to be also nonzero in binaries seen pole-on. We discuss possible applications of the theory to young stellar objects. In particular, several model light curves have been found to be similar to those of candidate FU Orionis stars (FUORs).  相似文献   

18.
Applications of the 42m European Extremely Large Telescope (E–ELT) for the physical characterization of asteroids is presented. In particular, this work focuses on the determination of sizes and other physical properties of asteroids from measurements of their heat emission in the thermal infrared (>5 μm). Here we show that E–ELT will be best suited for the physical characterization of some selected asteroids of particular interest, as for instance: (i) targets of sample return missions to near-Earth Asteroids (NEAs); (ii) km and sub-km binary asteroids for which size information will allow their bulk density to be derived; (iii) sizes and values of the thermal inertia of potentially hazardous asteroids (PHAs). These two parameters both affect the Yarkovsky effect, which plays a role in the orbital evolution of km sized asteroids and represents a large source of uncertainty in the Earth impact probability prediction of some PHAs. Thermal inertia is also a sensitive indicator for the presence or absence of thermal insulating regolith on the surface of atmosphere-less bodies. Knowledge of this parameter is thus important for the design and the development of lander- and sample return-missions to asteroids. The E–ELT will also be able to spatially resolve asteroids and detect binaries in a range of sizes that are at present not accessible to present day adaptive optics.  相似文献   

19.
Binary systems are quite common within the populations of near-Earth asteroids, main-belt asteroids, and Kuiper belt asteroids. The dynamics of binary systems, which can be modeled as the full two-body problem, is a fundamental problem for their evolution and the design of relevant space missions. This paper proposes a new shape-based model for the mutual gravitational potential of binary asteroids, differing from prior approaches such as inertia integrals, spherical harmonics, or symmetric trace-free tensors. One asteroid is modeled as a homogeneous polyhedron, while the other is modeled as an extended rigid body with arbitrary mass distribution. Since the potential of the polyhedron is precisely described in a closed form, the mutual gravitational potential can be formulated as a volume integral over the extended body. By using Taylor expansion, the mutual potential is then derived in terms of inertia integrals of the extended body, derivatives of the polyhedron’s potential, and the relative location and orientation between the two bodies. The gravitational forces and torques acting on the two bodies described in the body-fixed frame of the polyhedron are derived in the form of a second-order expansion. The gravitational model is then used to simulate the evolution of the binary asteroid (66391) 1999 KW4, and compared with previous results in the literature.  相似文献   

20.
A. Carbognani 《Icarus》2010,205(2):497-504
In this paper we compare the observable properties of 962 numbered MBAs (Main Belt Asteroids) of Tholen/SMASSII C and S class, with diameter in the range 1-500 km, not belonging to families or binary systems. Above 20 km, the diameters distributions of C and S are similar while under 20 km there is a clear observative bias in favour of small S asteroids which prevents a direct comparison. There is a significant correlation between rotation frequency and diameter both for C and S: if the diameter decreases the rotation frequency tends to increase. There is also a significant correlation between the lightcurve amplitude and the diameter for both samples: if the diameter decreases the lightcurve amplitude tends to increase. For larger diameter the C amplitude tends to be systematically higher than S amplitude of about 0.1 magnitude, but the difference is not very significant. Between 48 and 200 km, the C asteroids have a rotation frequency distribution compatible with a Maxwellian. On the other side, for S asteroids, the compatibility with the Maxwellian concerns diameters greater than 33 km. Considering the rotational properties and the lightcurve amplitude it appears that there are no substantial differences between the samples of C and S asteroids taken into account, and this indicates a good homogeneity in the processes of collisional evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号