首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   

2.
Abstract– High‐precision Cu isotopic compositions have been measured for the metal phase of 29 iron meteorites from various groups and for four terrestrial standards. The data are reported as the δ65Cu permil deviation of the 65Cu/63Cu ratio relative to the NIST SRM 976 standard. Terrestrial mantle rocks have a very narrow range of variations and scatter around zero. In contrast, iron meteorites show δ65Cu approximately 2.3‰ variations. Different groups of iron meteorites have distinct δ65Cu values. Nonmagmatic IAB‐IIICD iron meteorites have similar δ65Cu (0.03 ± 0.08 and 0.12 ± 0.10, respectively), close to terrestrial values (approximately 0). The other group of nonmagmatic irons, IIE, is isotopically distinct (?0.69 ± 0.15). IVB is the iron meteorite group with the strongest elemental depletion in Cu and samples in this group are enriched in the lighter isotope (δ65Cu down to ?2.26‰). Evaporation should have produced an enrichment in 65Cu over 63Cu (δ65Cu >0) and can therefore be ruled out as a mechanism for volatile loss in IVB meteorites. In silicate‐bearing iron meteorites, Δ17O correlates with δ65Cu. This correlation between nonmass‐dependent and mass‐dependent parameters suggests that the Cu isotopic composition of iron meteorites has not been modified by planetary differentiation to a large extent. Therefore, Cu isotopic ratios can be used to confirm genetic links. Cu isotopes thus confirm genetic relationships between groups of iron meteorites (e.g., IAB and IIICD; IIIE and IIIAB); and between iron meteorites and chondrites (e.g., IIE and H chondrites). Several genetic connections between iron meteorites groups are confirmed by Cu isotopes, (e.g., IAB and IIICD; IIIE and IIIAB); and between iron meteorites and chondrites (e.g., IIE and H chondrites).  相似文献   

3.
Abstract— The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:43 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3–6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa~39) with about 70 vol%. Feldspar (~14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilmenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, arid Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in δ17O (5.52 ‰) and δ18O (5.07 ‰). Previously, a small number of chondritic meteorites with strong similarities to Rumuruti were described. They were called Carlisle Lakes-type chondrites and they comprise: Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, PCA91002, and PCA91241, as well as clasts in the Weatherford chondrite. All these meteorites are finds from hot and cold deserts having experienced various degrees of weathering. With Rumuruti, the first meteorite fall has been recognized that preserves the primary mineralogical and chemical characteristics of a new group of meteorites. Comparing all chondrites, the characteristic features can be summarized as follows: (a) basically chondritic chemistry with ordinary chondrite element patterns of refractory and moderately volatile lithophiles but higher abundances of S, Se, and Zn; (b) high degree of oxidation (37–41 mol% Fa in olivine, only traces of Fe, Ni-metals, occurrence of chalcopyrite); (c) exceptionally high Δ17O values of about 2.7 for bulk samples; (d) high modal abundance of olivine (~70 vol%); (e) Ti-Fe3+?rich chromite (~5.5 wt% TiO2); (f) occurrence of various noble metal-rich particles; (g) abundant chondritic breccias consisting of equilibrated clasts and unequilibrated lithologies. With Rumuruti, nine meteorite samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutiites) after the first and only fall among these meteorites. These meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.  相似文献   

4.
The bulk chlorine concentrations and isotopic compositions of a suite of non‐carbonaceous (NC) and carbonaceous (CC) iron meteorites were measured using gas source mass spectrometry. The δ37Cl values of magmatic irons range from ?7.2 to 18.0‰ versus standard mean ocean chloride and are unrelated to their chlorine concentrations, which range from 0.3 to 161 ppm. Nonmagmatic IAB irons are comparatively Cl‐rich containing >161 ppm with δ37Cl values ranging from ?6.1 to ?3.2‰. The anomalously high and low δ37Cl values are inconsistent with a terrestrial source, and as Cl contents in magmatic irons are largely consistent with derivation from a chondrite‐like silicate complement, we suggest that Cl is indigenous to iron meteorites. Two NC irons, Cape York and Gibeon, have high cooling rates with anomalously high δ37Cl values of 13.4 and 18.0‰. We interpret these high isotopic compositions to result from Cl degassing during the disruption of their parent bodies, consistent with their low volatile contents (Ga, Ge, Ag). As no relevant mechanisms in iron meteorite parent bodies are expected to decrease δ37Cl values, whereas volatilization is known to increase δ37Cl values by the preferential loss of light isotopes, we interpret the low isotope values of <?5‰ and down to ?7.2‰ to most closely represent the primordial isotopic composition of Cl in the solar nebula. Similar conclusions have been derived from low δ37Cl values down to ?6, and ?3.8‰ measured in Martian and Vestan meteorites, respectively. These low δ37Cl values are in contrast to those of chondrites which average around 0‰ previously explained by the incorporation of isotopically heavy HCl clathrate into chondrite parent bodies. The poor retention of low δ37Cl values in many differentiated planetary materials suggest that extensive devolatilization occurred during planet formation, which can explain Earth's high δ37Cl value by the loss of approximately 60% of the initial Cl content.  相似文献   

5.
Abstract– Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 × 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km?2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact‐melt breccia). Among the meteorites, the range of compositions is large: 9–32% Al2O3, 2.5–21.1% FeO, 0.3–38 μg g?1 Sm, and <1 to 22.5 ng g?1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.  相似文献   

6.
High‐precision Zn isotopic compositions measured by MC‐ICP‐MS are documented for 32 iron meteorites from various fractionally crystallized and silicate‐bearing groups. The δ66Zn values range from ?0.59‰ up to +5.61‰ with most samples being slightly enriched in the heavier isotopes compared with carbonaceous chondrites (0 < δ66Zn < 0.5). The δ66Zn versus δ68Zn plot of all samples defines a common linear fractionation line, which supports the hypothesis that Zn was derived from a single reservoir or from multiple reservoirs linked by mass‐dependent fractionation processes. Our data for Redfields fall on a mass fractionation line and therefore refute a previous claim of it having an anomalous isotopic composition due to nonmixing of nucleosynthetic products. The negative correlation between δ66Zn and the Zn concentration of IAB and IIE is consistent with mass‐dependent isotopic fractionation due to evaporation with preferential loss of lighter isotopes in the vapor phase. Data for the Zn concentrations and isotopic compositions of two IVA samples demonstrate that volatile depletion in the IVA parent body is not likely the result of evaporation. This is important evidence that favors the incomplete condensation origin for the volatile depletion of the IVA parent body.  相似文献   

7.
Meteorite fusion crust formation is a brief event in a high‐temperature (2000–12,000 K) and high‐pressure (2–5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9–1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high‐pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O‐poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.  相似文献   

8.
Enstatite chondrites and aubrites are meteorites that show the closest similarities to the Earth in many isotope systems that undergo mass‐independent and mass‐dependent isotopic fractionations. Due to the analytical challenges to obtain high‐precision K isotopic compositions in the past, potential differences in K isotopic compositions between enstatite meteorites and the Earth remained uncertain. We report the first high‐precision K isotopic compositions of eight enstatite chondrites and four aubrites and find that there is a significant variation of K isotopic compositions among enstatite meteorites (from ?2.34‰ to ?0.18‰). However, K isotopic compositions of nearly all enstatite meteorites scatter around the bulk silicate earth (BSE) value. The average K isotopic composition of the eight enstatite chondrites (?0.47 ± 0.57‰) is indistinguishable from the BSE value (?0.48 ± 0.03‰), thus further corroborating the isotopic similarity between Earth's building blocks and enstatite meteorite precursors. We found no correlation of K isotopic compositions with the chemical groups, petrological types, shock degrees, and terrestrial weathering conditions; however, the variation of K isotopes among enstatite meteorite can be attributed to the parent‐body processing. Our sample of the main‐group aubrite MIL 13004 is exceptional and has an extremely light K isotopic composition (δ41K = ?2.34 ± 0.12‰). We attribute this unique K isotopic feature to the presence of abundant djerfisherite inclusions in our sample because this K‐bearing sulfide mineral is predicted to be enriched in 39K during equilibrium exchange with silicates.  相似文献   

9.
To examine the iron (Fe) isotopic heterogeneities of CI and ordinary chondrites, we have analyzed several large chips (approximately 1 g) from three CI chondrites and three ordinary chondrites (LL5, L5, and H5). The Fe isotope compositions of five different samples of Orgueil, one from Ivuna and one from Alais (CI chondrites), are highly homogeneous. This new dataset provides a δ56Fe average of 0.02 ± 0.04‰ (2SE, n = 7), which represents the best available value for the Fe isotopic composition of CI chondrites and probably the best estimate of the bulk solar system. We conclude that the homogeneity of CI chondrites reflects the initial Fe isotopic homogeneity of the well‐mixed solar nebula. In contrast, larger (up to 0.26‰ in δ56Fe) isotopic variations have been found between separate approximately 1 g pieces of the same ordinary chondrite sample. The Fe isotope heterogeneities in ordinary chondrites appear to be controlled by the abundances of chondritic components, specifically chondrules, whose Fe isotope compositions have been fractionated by evaporation and recondensation during multiple heating events.  相似文献   

10.
Edward Anders 《Icarus》1975,24(3):363-371
The place of origin of stony meteorites can be determined from their trapped solar-wind gases. “Gas-rich” meteorites have only 10?3?10?4 the solar noble gas content and ?10?2?10?4 the surface exposure age of lunar soils. These differences suggest that the gas implantation took place between 1 and 8 AU from the Sun, in a region where the cratering rate was 102?103 times higher than at 1 AU. Both characteristics point to the asteroid belt. The predicted Ne20 content a gas-rich meteorite formed at 2.5 AU is 1.2 × 10?5 cc STP g?1, compared to an observed mean for H-chondrites of 0.5 × 10?5 cc STP g?1. The observed prevalence of gas-rich meteorites (40–100% among carbonaceous chondrites, 2–33% among other classes) requires that the parent body remained long enough in the asteroid belt to develop a substantial regolith. This condition can be met by asteroids (~ 10% of mass converted to regolith.in 4.5 × 109 yr), but not by short period comets (~0.04% converted in 107 yr). It appears that a cometary origin can be ruled out for all stony meteorite clases that have gas-rich members. This includes carbonaceous chondrites.  相似文献   

11.
Abstract– Although iron isotopes are increasingly used for meteorites studies, no attempt has been made to evaluate the effect of terrestrial weathering on this isotopic tracer. We have thus conducted a petrographic, chemical, and iron isotopic study of equilibrated ordinary chondrites (OC) recovered from hot Moroccan and Algerian Saharan deserts environment. As previously noticed, we observe that terrestrial desertic weathering is characterized by the oxidation of Fe‐Ni metal (Fe0), sulfide and Fe2+ occurring in olivine and pyroxene. It produces Fe‐oxides and oxyhydroxides that partially replace metal, sulfide grains and also fill fractures. The bulk chemical compositions of the ordinary chondrites studied show a strong Sr and Ba enrichment and a S depletion during weathering. Bulk meteoritic iron isotope compositions are well correlated with the degree of weathering and S, Sr, and Ba contents. Most weathered chondrites display the heaviest isotopic composition, by up to 0.1‰, which is of similar magnitude to the isotopic variations resulting from meteorite parent bodies’ formation and evolution. This is probably due to the release of isotopically light Fe2+ to waters on the Earth’s surface. Hence, when subtle Fe isotopic effects have to be studied in chondrites, meteorites with weathering grade above W2 should be avoided.  相似文献   

12.
Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low‐Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low‐Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high‐Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low‐Ti mare basalt 15555, the highest concentrations of Li occur in late‐stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low‐ and high‐Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low‐Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high‐Ti: δ7Li >6‰; δ56Fe >0.18‰; δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large‐degree, high‐temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late‐stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile‐poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between ?2.5‰ and 4‰. The higher δ7Li in planetary basalts than in the compilation of chondrites (2.1 ± 1.3‰) demonstrates that differentiated planetary basalts are, on average, isotopically heavier than most chondrites.  相似文献   

13.
We report direct measurements of thermal diffusivity and conductivity at room temperature for 38 meteorite samples of 36 different meteorites including mostly chondrites, and thus almost triple the number of meteorites for which thermal conductivity is directly measured. Additionally, we measured porosity for 34 of these samples. Thermal properties were measured using an optical infrared scanning method on samples of cm‐sizes with a flat, sawn surface. A database compiled from our measurements and literature data suggests that thermal diffusivities and conductivities at room temperature vary largely among samples even of the same petrologic and chemical type and overlap among, for example, different ordinary chondrite classes. Measured conductivities of ordinary chondrites vary from 0.4 to 5.1 W m?1 K?1. On average, enstatite chondrites show much higher values (2.33–5.51 W m?1 K?1) and carbonaceous chondrites lower values (0.5–2.55 W m?1 K?1). Mineral composition (silicates versus iron‐nickel) and porosity control conductivity. Porosity shows (linear) negative correlation with conductivity. Variable conductivity is attributed to heterogeneity in mineral composition and porosity by intra‐ and intergranular voids and cracks, which are important in the scale of typical meteorite samples. The effect of porosity may be even more significant for thermal properties than that of the metal content in chondrites.  相似文献   

14.
We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from ?3.8 to +8.6‰. The olivine‐phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from ?4 to ?2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of ?1 to 0‰, except for Shergotty, which is similar to the olivine‐phyric shergottites. We interpret these data as due to mixing of a two‐component system. The first component is the mantle value of ?4 to ?3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl‐enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent‐body process that could lower the δ37Cl value of the Martian mantle to ?4 to ?3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl‐enriched HCl‐hydrate.  相似文献   

15.
We present high precision, low‐ and high‐resolution tungsten isotope measurements of iron meteorites Cape York (IIIAB), Rhine Villa (IIIE), Bendego (IC), and the IVB iron meteorites Tlacotepec, Skookum, and Weaver Mountains, as well as CI chondrite Ivuna, a CV3 chondrite refractory inclusion (CAI BE), and terrestrial standards. Our high precision tungsten isotope data show that the distribution of the rare p‐process nuclide 180W is homogeneous among chondrites, iron meteorites, and the refractory inclusion. One exception to this pattern is the IVB iron meteorite group, which displays variable excesses relative to the terrestrial standard, possibly related to decay of rare 184Os. Such anomalies are not the result of analytical artifacts and cannot be caused by sampling of a protoplanetary disk characterized by p‐process isotope heterogeneity. In contrast, we find that 183W is variable due to a nucleosynthetic s‐process deficit/r‐process excess among chondrites and iron meteorites. This variability supports the widespread nucleosynthetic s/r‐process heterogeneity in the protoplanetary disk inferred from other isotope systems and we show that W and Ni isotope variability is correlated. Correlated isotope heterogeneity for elements of distinct nucleosynthetic origin (183W and 58Ni) is best explained by thermal processing in the protoplanetary disk during which thermally labile carrier phases are unmixed by vaporization thereby imparting isotope anomalies on the residual processed reservoir.  相似文献   

16.
Abstract– In situ secondary ion mass spectrometry analyses of 32S, 33S, and 34S in iron‐nickel sulfide grains in two CI1 chondrites and six CM chondrites were performed. The results show a wider range of both enrichment and depletion in δ34S relative to troilite from the Canyon Diablo meteorite (CDT) than has been observed in previous studies. All data points lie within error of a single mass dependent fractionation line. Sulfides from CI1 chondrites show δ34SCDT from ?0.7 to 6.8‰, while sulfide grains in the CM1 chondrite are generally depleted in heavy sulfur relative to CDT (δ34S from ?2.9 to 1.8‰). CM2 chondrites contain sulfide grains that show enrichment and depletion in 34S (δ34SCDT from ?7.0 to 6.8‰). Sulfates forming from sulfide grains during aqueous alteration on the chondrite parent body are suggested to concentrate light sulfur, leaving the remaining sulfide grains enriched in the heavy isotopes of sulfur. The average degree of enrichment in 34S in CM chondrite sulfides is broadly consistent with previously suggested alteration sequences.  相似文献   

17.
In this study, we present a method for high precision Δ′17O (Δ′17ORL = ln(δ17O + 1) – λRL ln(δ18O + 1)) analysis of small mass silicate and oxide materials. The analyses were conducted by laser fluorination in combination with gas chromatography and continuous flow isotope ratio monitoring gas spectrometry. We could analyze the oxygen isotope composition of samples down to 1 μg, which corresponded to about 13 nmol O2. The analytical error (we report the 1σ external reproducibility of a single analysis) in δ18O increases with decreasing sample sizes from ~0.2‰ for ~20 μg samples to ~0.9‰ for 1 μg samples. For Δ′17O, we achieved an external reproducibility of 0.04‰ for a sample mass range between 1 and 27 μg. The uncertainty in Δ′17O is smaller than the uncertainty in δ18O due to the correlated errors in δ17O and δ18O. We applied the method to urban micrometeorites, that is, small meteorites (<2 mm) that were sampled from a rooftop in Berlin, Germany. A total of 10 melted micrometeorites (S-type cosmic spherules, masses between 11 and 22 μg) were analyzed. The oxygen isotope compositions are comparable to that of modern Antarctic collections, indicating that the urban micrometeorites sample the same population. No indication for terrestrial weathering had been identified in the studied set of urban micrometeorites making them suitable materials for the study of micrometeorite origins.  相似文献   

18.
Abstract— The mineralogy and composition of six Mongolian meteorites were studied in some detail. Previously, only limited information existed about these rocks, and some were still unclassified. The six meteorites include three ordinary chondrites and three irons. The ordinary chondrite Adzhi-Bogdo (stone) is a regolith breccia (LL3–6) containing various types of clasts (some of foreign origin) embedded within a fine-grained clastic matrix. Tugalin Bulen (H6) and Noyan Bogdo (L6) meteorites are typical, well-metamorphosed ordinary chondrites. Adzhi-Bogdo (iron) has to be regarded as an IA iron meteorite like Campo del Cielo or Canyon Diablo; although the sample studied had been heated to about 900 °C–950 °C some time in the past, thus eradicating all original structural elements. Manlai is structurally closely related to the IIC iron meteorites; but based on its chemistry, which does not fit into this group, it is suggested that Manlai is an anomalous iron meteorite. The third iron, Sargiin Gobi, is certainly a normal member of the IA iron meteorites. The concentrations and isotopic compositions of He, Ne, and Ar were measured for all meteorites and their gas retention ages and exposure ages are discussed.  相似文献   

19.
High‐precision oxygen three‐isotope ratios were measured for four mineral phases (olivine, low‐Ca and high‐Ca pyroxene, and plagioclase) in equilibrated ordinary chondrites (EOCs) using a secondary ion mass spectrometer. Eleven EOCs were studied that cover all groups (H, L, LL) and petrologic types (4, 5, 6), including S1–S4 shock stages, as well as unbrecciated and brecciated meteorites. SIMS analyses of multiple minerals were made in close proximity (mostly <100 μm) from several areas in each meteorite thin section, to evaluate isotope exchange among minerals. Oxygen isotope ratios in each mineral become more homogenized as petrologic type increases with the notable exception of brecciated samples. In type 4 chondrites, oxygen isotope ratios of olivine and low‐Ca pyroxene are heterogeneous in both δ18O and Δ17O, showing similar systematics to those in type 3 chondrites. In type 5 and 6 chondrites, oxygen isotope ratios of the four mineral phases plot along mass‐dependent fractionation lines that are consistent with the bulk average Δ17O of each chondrite group. The δ18O of three minerals, low‐Ca and high‐Ca pyroxene and plagioclase, are consistent with equilibrium fractionation at temperatures of 700–1000 °C. In most cases the δ18O values of olivine are higher than those expected from pyroxene and plagioclase, suggesting partial retention of premetamorphic values due to slower oxygen isotope diffusion in olivine than pyroxene during thermal metamorphism in ordinary chondrite parent bodies.  相似文献   

20.
Northwest Africa (NWA) 6583 is a silicate‐bearing iron meteorite with Ni = 18 wt%. The oxygen isotope composition of the silicates (?′17O = ?0.439 ‰) indicates a genetic link with the IAB‐complex. Other chemical, mineralogical, and textural features of NWA 6583 are consistent with classification as a new member of the IAB‐complex. However, some unique features, e.g., the low Au content (1.13 μg g?1) and the extremely reducing conditions of formation (approximately ?3.5 ?IW), distinguish NWA 6583 from the known IAB‐complex irons and extend the properties of this group of meteorites. The chemical and textural features of NWA 6583 can be ascribed to a genesis by impact melting on a parent body of chondritic composition. This model is also consistent with one of the most recent models for the genesis of the IAB‐complex. Northwest Africa 6583 provides a further example of the wide lithological and mineralogical variety that impact melting could produce on the surface of a single asteroid, especially if characterized by an important compositional heterogeneity in space and time like a regolith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号