首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reflex motion of a star induced by a planetary companion is too small to detect by photographic astrometry. The apparent discovery in the 1960s of planetary systems around certain nearby stars, in particular Barnard’s star, turned out to be spurious. Conventional stellar radial velocities determined from photographic spectra at that time were also too inaccurate to detect the expected reflex velocity changes. In the late 1970s and early 1980s, the introduction of solid-state, signal-generating detectors and absorption cells to impose wavelength fiducials directly on the starlight, reduced radial velocity errors to the point where such a search became feasible. Beginning in 1980, our team from UBC introduced an absorption cell of hydrogen fluoride gas in front of the CFHT coudé spectrograph and, for 12 years, monitored the radial velocities of some 29 solar-type stars. Since it was assumed that extra-solar planets would most likely resemble Jupiter in mass and orbit, we were awarded only three or four two-night observing runs each year. Our survey highlighted three potential planet hosting stars, γ Cep (K1 IV), β Gem (K0 III), and ? Eri (K2 V). The putative planets all resembled Jovian systems with periods and masses of: 2.5 years and 1.4 MJ, 1.6 years and 2.6 MJ, and 6.9 years and 0.9 MJ, respectively. All three were subsequently confirmed from more extensive data by the Texas group led by Cochran and Hatzes who also derived the currently accepted orbital elements.None of these three systems is simple. All five giant stars and the supergiant in our survey proved to be intrinsic velocity variables. When we first drew attention to a possible planetary companion to γ Cep in 1988 it was classified as a giant, and there was the possibility that its radial velocity variations and those of β Gem (K0 III) were intrinsic to the stars. A further complication for γ Cep was the presence of an unseen secondary star in an orbit with a period initially estimated at some 30 years. The implication was that the planetary orbit might not be stable, and a Jovian planet surviving so close to a giant then seemed improbable. Later observations by others showed the stellar binary period was closer to 67 years, the primary was only a sub-giant and a weak, apparently synchronous chromospheric variation disappeared. Chromospheric activity was considered important because κ1 Cet, one of our program stars, showed a significant correlation of its radial velocity curve with chromospheric activity.? Eri is a young, magnetically active star with spots making it a noisy target for radial velocities. While the signature of a highly elliptical orbit (e = 0.6) has persisted for more than three planetary orbits, some feel that even more extensive coverage is needed to confirm the identification despite an apparent complementary astrometric acceleration detected with the Hubble Space Telescope.We confined our initial analyses of the program stars to looking for circular orbits. In retrospect, it appears that some 10% of our sample did in fact have Jovian planetary companions in orbits with periods of years.  相似文献   

2.
The OGLE survey for transiting planets has identified 177 transit candidates. Subsequent radial velocity follow-up of these candidates has allowed the detection of five transiting planets, as well as several dozen eclipsing binaries.Some of these systems consist of solar-type stars transited by small M dwarf companion, including the smallest stellar companions yet measured by transit. As a result, the OGLE transit survey has yielded a wealth of data on the mass-radius relation of planets and low-mass stars. In particular, two planet-sized stars were found, an empirical proof of the model predictions on Jupiter-sized main-sequence stars.  相似文献   

3.
The Astrometric Imaging Telescope (AIT) is a proposed spaceborne observatory whose primary goal is the detection and study of extra-solar planetary systems. It contains two instruments that use complementary techniques to address the goal. The first instrument, the Coronagraphic Imager, takes direct images of nearby stars and Jupiter-size planets. It uses a telescope with scattering-compensated optics and a high-efficiency coronagraph to separate reflected planet light from the central star light. Planet detections take hours; confirmations occur in months. With a program duration of about 2 years, about 50 stars are observed. The second instrument, the Astrometric Photometer, shares the same telescope and focal plane. It uses a Ronchi ruling that is translated across the focal plane to simultaneously measure the positions of each target star and about 25 reference stars with sufficient accuracy to detect Uranus-mass planets around hundreds of stars. Enough stars of several spectral types are observed to obtain a statistically significant measurement of the prevalence of planetary systems. This observing program takes about 10 years to complete. The combination of both instruments in a single telescope system results from a number of innovative solutions that are described in this paper.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

4.
We suggest that Jovian planets will survive the late stages of stellar evolution, and that white dwarfs will retain planetary systems in wide orbits (≳5 au). Utilizing evolutionary models for Jovian planets, we show that infrared imaging with 8-m class telescopes of suitable nearby white dwarfs should allow us to resolve and detect companions ≳3 M JUP. Detection of massive planetary companions to nearby white dwarfs would prove that such objects can survive the final stages of stellar evolution, place constraints on the frequency of main-sequence stars with planetary systems dynamically similar to our own and allow direct spectroscopic investigation of their composition and structure.  相似文献   

5.
Measurement of variations in the radial velocities of stars due to the reflex orbital motion of the star around the planetary-system barycenter constitutes a powerful method of searching for substellar or planetary mass companions. After several years of patient data acquisition, radial-velocity searches for planetary systems around other stars are now beginning to bear fruit. In late 1995 and early 1996, three candidate systems were announced with Jovian-mass planets around solar-type stars. The current paradigm for low-mass star formation suggests that planetary systems should be able to form in the circumstellar disks surrounding young stellar objects. These newly discovered systems, and other discoveries which will soon follow them, will test critically our understanding of the processes of star- and planet-formation. We review the techniques used in these radial-velocity searches and their results to date. We then discuss planned improvements in the surveys, and the prospects for the next 20 years.  相似文献   

6.
Harold A. McAlister 《Icarus》1977,30(4):789-792
The applicability of the technique of speckle interferometry to the problem of detecting faint planetary and stellar objects around nearby stars is considered. Direct resolution could not be expected to reveal planetary objects, although many faint stellar objects should be detectable with a speckle camera of large dynamic range. The most promising possibilities lie with the approximately 100 nearby visual binaries with separations ?3 arcsec. Continued speckle interferometric observation of these systems could detect perturbations with amplitudes similar to those detectable by an ideal astrometric telescope. A simple scheme for measurement the fringe spacing in the composite spatial frequency power spectrum of the visual binary Eta Orionis indicates that relative separations with accuracies of 0″.002 in each coordinate are attainable. Use as reference stars of faint background stars lying within the isoplanatic patch of a nearby star is also considered.  相似文献   

7.
K. Serkowski 《Icarus》1976,27(1):13-24
A method of wavelength calibration is proposed which may enable measuring changes in radial velocity of bright solar-type stars to an accuracy of about 5 meters per second. Such accuracy would be sufficient for detecting Jupiter-like planets around these stars. The stellar spectrum is imaged by a slitless echelle spectrograph onto a 100-channel Digicon image tube. Instrumental profiles of Digicon diodes are narrowed down by a Fabry-Perot etalon, making the profiles less dependent on atmospheric seeing. The spectrograph and the etalon act merely as a series of narrow band filters for the individual diodes; effective wavelengths of these “filters” are monitored by a crystal retarder (phase retardation plate) kept at a constant temperature. For artificially linearly polarized stellar light which passes through this retarder and through a quarter-wave plate, the plane of polarization varies rapidly with wavelength. The precisely measured position angle of polarization provides wavelength calibration for every resolution element in the spectrum.  相似文献   

8.
We have been measuring changes in the radial velocities (RV's) of solar-type stars to search for gravitational perturbations by planets. We transmit violet starlight through a Fabry-Perot etalon interferometer and sense changes in Doppler shift from changes in the fluxes of light on the slopes of stellar absorption lines. Our data now span 6 years. Our observations of the Sun showed earlier that both our technique and the profiles of solar photospheric violet absorption lines can be stable enough to reveal planetary perturbations. We now carry this validation to the spectra of other near-solar-type stars. Annual averages of our RV's of Draconis and Virginis are stable to ±6 m s–1. The slope of our five-year series of RV's of Bootis A is consistent with the star's well-determined visual astrometric orbit about Bootis B. The Fabry-Perot technique of Doppler shift measurement is fully capable of detecting perturbations due to planets with masses and orbits similar to those of Jupiter.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

9.
A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

10.
I01 NIR Imaging Spectroscopy of Extrasolar Planets I02 Eccentricity growth in protoplanetary disks with embedded planets I03 Brown dwarf atmospheres: the dust in the L – T transition region I04 Model Atmospheres of Substellar Atmospheres at a Young Age:Influence of Gravity and Dust I05 Detection of Planetary Transits using Wavelet Analysis and Genetic Algorithms I06 Automated Difference Imaging for Extrasolar Planet Searches I07 The formation of planets around stars with various masses I08 The Multiplicity of exoplanet host stars I09 Direct imaging of planets around young stars, the case of GQ Lup b I10 On the Nucleation of NH3 under the Atmospheric Conditions of Jovian‐like Planets I11 Unveiling a new low‐mass star formation site in NGC 1333 with SCUBA I12 Linear analysis of the stability of protoplanets: Possible planetary evolutions and comparisons to the Jeans‐analysis I13 Triggered planet formation in young stellar clusters I14 Convective Radiation Fluid‐Dynamics: Formation and Early Evolution at the Substellar Limit and Beyond  相似文献   

11.
The Space Telescope can play a key role in searching for and investigating the contents of extra-solar planetary systems. For about 90 nearby stars, positional variations due to major planets would be well within the astrometric capability of the Wide-Field/Planetary Camera system. Since the centroids of star images will be determined to within a milliarcsecond down to 22nd magnitude, there will be an abundance of reference stars at very small angular distances from each planetary system candidate, and they will have small enough motions of their own to provide a reference frame of the stability required.Presented at the Symposium Star Catalogues, Positional Astronomy and Celestial Mechanics, held in honor of Paul Herget at the U.S. Naval Observatory, Washington, November 30, 1978.  相似文献   

12.
We present a new analysis of the expected magnetospheric radio emission from extrasolar giant planets (EGPs) for a distance limited sample of the nearest known extrasolar planets. Using recent results on the correlation between stellar X-ray flux and mass-loss rates from nearby stars, we estimate the expected mass-loss rates of the host stars of extrasolar planets that lie within 20 pc of the Earth. We find that some of the host stars have mass-loss rates that are more than 100 times that of the Sun and, given the expected dependence of the planetary magnetospheric radio flux on stellar wind properties, this has a very substantial effect. Using these results and extrapolations of the likely magnetic properties of the extrasolar planets, we infer their likely radio properties.
We compile a list of the most promising radio targets and conclude that the planets orbiting Tau Bootes, Gliese 86, Upsilon Andromeda and HD 1237 (as well as HD 179949) are the most promising candidates, with expected flux levels that should be detectable in the near future with upcoming telescope arrays. The expected emission peak from these candidate radio emitting planets is typically ∼40–50 MHz. We also discuss a range of observational considerations for detecting EGPs.  相似文献   

13.
TODCOR is a new TwO-Dimensional CORrelation technique to measure radial velocities of two components of a spectroscopic binary. Assuming the spectra of the two components are known, the technique correlates an observed binary spectrum against a combination of the two spectra with different shifts. TODCOR measuressimultaneously the radial velocities of the two stars by finding the maximum correlation.One of the advantages of TODCOR is its ability to detect a very faint companion in a combined spectrum, and to measure its radial velocity. We performed numerous tests in which we applied TODCOR to simulated spectra which were prepared as combinations of two spectra with various luminosity ratios, together with random noise. These tests show that TODCOR can detect a very faint secondary spectrum and measure correctly its velocity, even with a luminosity ratio of 1000, provided the combined spectrum has enough spectral coverage and highS / N. Measuring the radial velocity of the faint secondary will enable us to estimate the companion mass, a very useful tool in the search for brown dwarfs and giant planets around nearby stars.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

14.
A system for obtaining high-precision radial velocities of solar-type stars by spectral cross-correlation has been established at the Mt John University Observatory. The use of a fibre-feed between the telescope and échelle spectrograph has enabled a stability such that we can achieve a precision of better than 50 m s–1.A programme of radial-velocity observations of 29 southern solar-type stars—of which two are IAU radial velocity standard stars—is under way with the prime objective being a search for low-mass companions to the stars. Ten further IAU radial-velocity standard stars are also being monitored.  相似文献   

15.
The photometric method detects planets orbiting other stars by searching for the reduction in the light flux or the change in the color of the stellar flux that occurs when a planet transits a star. A transit by Jupiter or Saturn would reduce the stellar flux by approximately 1% while a transit by Uranus or Neptune would reduce the stellar flux by 0.1%. A highly characteristic color change with an amplitude approximately 0.1 of that for the flux reduction would also accompany the transit and could be used to verify that the source of the flux reduction was a planetary transit rather than some other phenomenon. Although the precision required to detect major planets is already available with state-of-the-art photometers, the detection of terrestrial-sized planets would require a precision substantially greater than the state-of-the-art and a spaceborne platform to avoid the effects of variations in sky transparency and scintillation. Because the probability is so small of observing a planetary transit during a single observation of a randomly chosen star, the search program must be designed to continuously monitor hundreds or thousands of stars. The most promising approach is to search for large planets with a photometric system that has a single-measurement precision of 0.1%. If it is assumed that large planets will have long-period orbits, and that each star has an average of one large planet, then approximately 104 stars must be monitored continuously. To monitor such a large groups of stars simultaneously while maintaining the required photometric precision, a detector array coupled by a fiber-optic bundle to the focal plane of a moderate aperture (≈ 1 m), wide field of view (≈50°) telescope is required. Based on the stated assumptions, a detection rate of one planet per year of observation appears possible.  相似文献   

16.
David C. Black 《Icarus》1980,43(3):293-301
There is currently no unambiguous observational evidence for the existence of other planetary systems. One possible way to detect and study such systems is infrared observations of continuum blackbody radiation from planets revolving around other stars. It is shown that the effective temperature of large planets revolving around mid- to-late-spectral-type main-sequence stars is set by energy sources internal to the planet rather than by equilibrium with the radiation field of the central star, making them easier to detect than had been previously thought. Consideration is given to the two major observational constraints on detecting planetary companions to nearby stars, namely, angular resolution and sensitivity. A comparison is made between the performance of an ambient (T ~ 200°K), single-aperture telescope and a cooled interferometer. In each case the required aperture (baseline) is large (in the 10-m class), but consistent with Shuttle launch capability.  相似文献   

17.
By considering the physical and orbital characteristics of G type stars and their exoplanets, we examine the association between stellar mass and its metallicity that follows a power law. Similar relationship is also obtained in case of single and multiplanetary stellar systems suggesting that, \(\hbox {Sun}^{\prime }\)s present mass is about 1% higher than the estimated value for its metallicity. Further, for all the stellar systems with exoplanets, association between the planetary mass and the stellar metallicity is investigated, that suggests planetary mass is independent of stellar metallicity. Interestingly, in case of multiplanetary systems, planetary mass is linearly dependent on the stellar absolute metallicity, that suggests, metal rich stars produce massive (\(\ge \)1 Jupiter mass) planets compared to metal poor stars. This study also suggests that there is a solar system planetary missing mass of \({\sim }\)0.8 Jupiter mass. It is argued that probably 80% of missing mass is accreted onto the Sun and about 20% of missing mass might have been blown off to the outer solar system (beyond the present Kuiper belt) during early history of solar system formation. We find that, in case of single planetary systems, planetary mass is independent of stellar metallicity with an implication of their non-origin in the host star’s protoplanetary disk and probably are captured from the space. Final investigation of dependency of the orbital distances of planets on the host stars metallicity reveals that inward migration of planets is dominant in case of single planetary systems supporting the result that most of the planets in single planetary systems are captured from the space.  相似文献   

18.
A new fiber‐fed spectrograph was installed at the 60 cm telescope of the Stará Lesná Observatory. The article presents tests of its performance (spectral resolution, signal‐to‐noise ratio, radial‐velocity stability) and reports observations of selected variable stars and exoplanet host stars. First test observations show that the spectrograph is an ideal tool to observe bright eclipsing and spectroscopic binaries but also symbiotic and nova‐like stars. The radial‐velocity stability (60–80 m s–1) is sufficient to study spectroscopic binaries and to detect easily the orbital motion of hot‐Jupiter extrasolar planets around bright stars. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Existing instruments are unable to detect planets about stars other than the Sun but such detection would be important for the theory of origin of our solar system and in the search for extraterrestrial intelligence. Infrared offers an advantage of about 105 over visible light as regards the ratio of power received from star and planet. Infrared interferometry from Earth orbit would allow discrimination against the stellar infrared by the placement of an interference null on the star and a spinning infrared interferometer would modulate the planetary emission to permit extraction by synchronous detection from the background level. The limit to sensitivity will be set by thermal emission from the zodiacal light particles near the Earth's orbit unless the interferometer is launched out of the ecliptic or out to the orbit of Jupiter, in which case instrumental limitations will dominate. Technological developments in several fields will be required as also with astrometry, spectroscopic radial velocity measurement, and direct photography from orbit, three approaches with which infrared interferometry should be carefully compared.  相似文献   

20.
FRESIP (FRequency of Earth-Sized Inner Planets) is a mission designed to detect and characterize Earth-sizes planets around solar-like stars. The sizes of the planets are determined from the decrease in light from a star that occurs during planetary transits, while the orbital period is determined from the repeatability of the transits. Measurements of these parameters can be compared to theories that predict the spacing of planets, their distribution of size with orbital distance, and the variation of these quantities with stellar type and multiplicity. Because thousands of stars must be continually monitored to detect the transits, much information on the stars can be obtained on their rotation rates and activity cycles. Observations of p-mode oscillations also provide information on their age and composition. These goals are accomplished by continuously and simultaneously monitoring 500 solar-like stars for evidence of brightness changes caused by Earth-sized or larger planetary transits. To obtain the high precision needed to find planets as small as the Earth and Venus around solar-like stars, a wide field of view Schmidt telescope with an array of CCD detectors at its focal plane must be located outside of the Earth's at mosphere. SMM (Solar Maximum Mission) observations of the low-level variability of the Sun (1:100,000) on the time scales of a transit (4 to 16 hours), and our laboratory measurements of the photometric precision of charge-coupled devices (1:100,000) show that the detection of planets as small as the Earth is practical. The probability for detecting transits is quite favorable for planets in inner orbits. If other planetary systems are similar to our own, then approximately 1% of those systems will show transits resulting in the discovery of 50 planetary systems in or near the habitable zone of solar-like stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号