首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrino production of radio Cherenkov signals in the Moon is the object of radio telescope observations. Depending on the energy range and detection parameters, the dominant contribution to the neutrino signal may come from interactions of the neutrino on the Moon facing the telescope, rather than neutrinos that have traversed a portion of the Moon. Using the approximate analytic expression of the effective lunar aperture from a recent paper by Gayley, Mutel and Jaeger, we evaluate the background from cosmic ray interactions in the lunar regolith. We also consider the modifications to the effective lunar aperture from generic non-standard model neutrino interactions. A background to neutrino signals are radio Cherenkov signals from cosmic ray interactions. For cosmogenic neutrino fluxes, neutrino signals will be difficult to observe because of low neutrino flux at the high energy end and large cosmic ray background in the lower energy range considered here. We show that lunar radio detection of neutrino interactions is best suited to constrain or measure neutrinos from astrophysical sources and probe non-standard neutrino-nucleon interactions such as microscopic black hole production.  相似文献   

2.
K.E. Johnson   《New Astronomy Reviews》2004,48(11-12):1337
The Square Kilometer Array (SKA) will enable studies of star formation in nearby galaxies with a level of detail never before possible outside of the Milky Way. Because the earliest stages of stellar evolution are often inaccessible at optical and near-infrared wavelengths, high spatial resolution radio observations are necessary to explore extragalactic star formation. The SKA will have the sensitivity to detect individual ultracompact HII regions out to the distance of nearly 50 Mpc, allowing us to study their spatial distributions, morphologies, and populations statistics in a wide range of environments. Radio observations of Wolf-Rayet stars outside of the Milky Way will also be possible for the first time, greatly expanding the range of conditions in which their mass loss rates can be determined from free-free emission. On a vastly larger scale, natal of super star clusters will be accessible to the SKA out to redshifts of nearly z 0.1. The unprecedented sensitivity of radio observations with the SKA will also place tight constraints on the star formation rates as low as 1M yr−1 in galaxies out to a redshift of z 1 by directly measuring the thermal radio flux density without assumptions about a galaxy’s magnetic field strength, cosmic ray production rate, or extinction.  相似文献   

3.
Gamma ray burst (GRB) fireballs provide one of very few astrophysical environments where one can contemplate the acceleration of cosmic rays to energies that exceed 1020 eV. The assumption that GRBs are the sources of the observed cosmic rays generates a calculable flux of neutrinos produced when the protons interact with fireball photons. With data taken during construction IceCube has already reached a sensitivity to observe neutrinos produced in temporal coincidence with individual GRBs provided that they are the sources of the observed extra-galactic cosmic rays. We here point out that the GRB origin of cosmic rays is also challenged by the IceCube upper limit on a possible diffuse flux of cosmic neutrinos which should not be exceeded by the flux produced by all GRB over Hubble time. Our alternative approach has the advantage of directly relating the diffuse flux produced by all GRBs to measurements of the cosmic ray flux. It also generates both the neutrino flux produced by the sources and the associated cosmogenic neutrino flux in a synergetic way.  相似文献   

4.
The epoch of reionization (EoR) sets a fundamental benchmark in cosmic structure formation, corresponding to the formation of the first luminous objects that act to ionize the neutral intergalactic medium (IGM). Recent observations at near-IR and radio wavelengths imply that we are finally probing into this key epoch of galaxy formation at z 6. The Square Kilometer Array (SKA) will provide critical insight into the EoR, in a number of ways. First, the ability of the SKA to image the neutral IGM in 21-cm emission is a truly unique probe of the process of reionization, and is recognized as the next necessary and fundamental step in our study of the evolution of large scale structure and cosmic reionization. Second, study of HI 21-cm absorption toward the first radio loud objects probes small to intermediate scale structure in the neutral ‘cosmic web’, as well as HI in the first collapsed structures (proto-disks and mini-halos). And third, the incomparable sensitivity of the SKA allows for the study of the molecular gas, dust, and star formation activity in the first galaxies, as well as the radio continuum emission from the first accreting massive black holes. Such objects will be obscured at optical wavelengths due to absorption by the neutral IGM.  相似文献   

5.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

6.
In this paper, we investigate how the Square Kilometre Array (SKA) can aid in determining the evolutionary history of active galactic nuclei (AGN) from redshifts z = 0 → 6. Given the vast collecting area of the SKA, it will be sensitive to both ‘radio-loud’ AGN and the much more abundant ‘radio-quiet’ AGN, namely the radio-quiet quasars and their ‘Type-II’ counterparts, out to the highest redshifts. Not only will the SKA detect these sources but it will also often be able to measure their redshifts via the Hydrogen 21-cm line in emission and/or absorption. We construct a complete radio luminosity function (RLF) for AGN, combining the most recent determinations for powerful radio sources with an estimate of the RLF for radio-quiet objects using the hard X-ray luminosity function of [ApJ 598 (2003) 886], including both Type-I and Type-II AGN. We use this complete RLF to determine the optimal design of the SKA for investigating the accretion history of the Universe for which it is likely to be a uniquely powerful instrument.  相似文献   

7.
We describe the scientific motivation, experimental basis, design methodology, and simulated performance of the ExaVolt Antenna (EVA) mission, and planned ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. EVA will improve over ANITA’s integrated totals – the current state-of-the-art in UHE suborbital payloads – by 1–2 orders of magnitude in a single flight. The design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. Radio impulses arise via the Askaryan effect when UHE neutrinos interact within the ice, or via geosynchrotron emission when UHE cosmic rays interact in the atmosphere above the continent. EVA’s instantaneous antenna aperture is estimated to be several hundred m2 for detection of these events within a 150–600 MHz band. For standard cosmogenic UHE neutrino models, EVA should detect of order 30 events per flight in the EeV energy regime. For UHE cosmic rays, of order 15,000 geosynchrotron events would be detected in total, several hundred above 10 EeV, and of order 60 above the GZK cutoff energy.  相似文献   

8.
The present-day Universe is seemingly dominated by dark energy and dark matter, but mapping the normal (baryonic) content remains vital for both astrophysics – understanding how galaxies form – and astro-particle physics – inferring properties of the dark components.The Square Kilometer Array (SKA) will provide the only means of studying the cosmic evolution of neutral hydrogen (HI) which, alongside information on star formation from the radio continuum, is needed to understand how stars formed from gas within dark-matter over-densities and the rôles of gas accretion and galaxy merging.‘All hemisphere’ HI redshift surveys to z 1.5 are feasible with wide-field-of-view realizations of the SKA and, by measuring the galaxy power spectrum in exquisite detail, will allow the first precise studies of the equation-of-state of dark energy. The SKA will be capable of other uniquely powerful cosmological studies including the measurement of the dark-matter power spectrum using weak gravitational lensing, and the precise measurement of H0 using extragalactic water masers.The SKA is likely to become the premier dark-energy-measuring machine, bringing breakthroughs in cosmology beyond those likely to be made possible by combining CMB (e.g. Planck), optical (e.g. LSST, SNAP) and other early-21st-century datasets.  相似文献   

9.
Tau neutrinos interacting inside the Earth produce τ leptons which thereafter can decay inside the atmosphere. The propagation of extremely energetic ντ’s and τ’s through the Earth is studied by means of a detailed Monte Carlo simulation, taking into account all major mechanisms of ντ interactions and τ energy loss as well as decay modes. The rates of τ’s emerging from the Earth are determined as a function of τ’s energy for several cosmic neutrino models.  相似文献   

10.
《Astroparticle Physics》2009,32(1):53-60
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen–Zatsepin–Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.  相似文献   

11.
12.
The extragalactic flux of protons is predicted to be suppressed above the famous Greisen–Zatsepin–Kuzmin cut-off at about EGZK  50 EeV due to the resonant photo-pion production with the cosmic microwave background. Current cosmic ray data do not give a conclusive confirmation of the GZK cut-off and the quest about the origin and the chemical composition of the highest energy cosmic rays is still open. Amongst other particles neutrinos are expected to add to the composition of the cosmic radiation at highest energies. We present an approach to simulate neutrino induced air showers by a full Monte Carlo simulation chain. Starting with neutrinos at the top of the atmosphere, the performed simulations take into account the details of the neutrino propagation inside the Earth and atmosphere as well as inside the surrounding mountains. The products of the interactions are input for air shower simulations. The mountains are modelled by means of a digital elevation map. To exemplify the potential and features of the developed tools we study the possibility to detect neutrino induced extensive air showers with the fluorescence detector set-up of the Pierre Auger Observatory. Both, down-going neutrinos and up-going neutrinos are simulated and their rates are determined. To evaluate the sensitivity, as a function of the incoming direction, the aperture, the acceptance and the total observable event rates are calculated for the Waxman–Bahcall (WB) bound.  相似文献   

13.
In the forthcoming months, the KamLAND experiment will probe the parameter space of the solar large mixing angle MSW solution as the origin of the solar neutrino deficit with ’s from distant nuclear reactors. If however the solution realized in nature is such that Δm2sol2×10−4 eV2 (thereafter named the HLMA region), KamLAND will only observe a rate suppression but no spectral distortion and hence it will not have the optimal sensitivity to measure the mixing parameters. In this case, we propose a new medium baseline reactor experiment located at Heilbronn (Germany) to pin down the precise value of the solar mixing parameters. In this paper, we present the Heilbronn detector site, we calculate the interaction rate and the positron spectrum expected from the surrounding nuclear power plants. We also discuss the sensitivity of such an experiment to |Ue3| in both normal and inverted neutrino mass hierarchy scenarios. We then outline the detector design, estimate background signals induced by natural radioactivity as well as by in situ cosmic ray muon interaction, and discuss a strategy to detect the anti-neutrino signal ‘free of background’.  相似文献   

14.
The detection of the Cosmic Thermal Neutrino Background (CTNB) would provide the “cleanest” evidence for the hot big bang model of the early Universe. I discuss some recent thoughts on the possibility of detecting the CTNB (especially if neutrinos have a small mass of ~ few eV) by looking for certain CTNB-induced features in the extremely high energy (E ≳ 1020 eV) cosmic neutrino spectrum that may become measurable in the future by some of the large-area extensive air-shower detectors being built for detecting extremely high energy cosmic rays. NAS/NRC Senior Research Associate on sabbatical leave from Indian Institute of Astrophysics, Bangalore 560 034, India.  相似文献   

15.
《Astroparticle Physics》2012,35(6):312-324
The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies Eν > 1011 GeV is derived from acoustic data taken over eight months.  相似文献   

16.
Identifying the accelerators that produce the Galactic and extragalactic cosmic rays has been a priority mission of several generations of high energy gamma ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes, and the construction of CTA, a ground-based gamma ray detector that will map and study candidate sources with unprecedented precision. In this paper, we revisit the prospects for revealing the sources of the cosmic rays by a multiwavelength approach; after reviewing the methods, we discuss supernova remnants, gamma ray bursts, active galaxies and GZK neutrinos in some detail.  相似文献   

17.
The current supernova detection technique used in IceCube relies on the sudden deviation of the summed photomultiplier noise rate from its nominal value during the neutrino burst, making IceCube a ≈3 Megaton effective detection volume - class supernova detector. While galactic supernovae can be resolved with this technique, the supernova neutrino emission spectrum remains unconstrained and thus presents a limited potential for the topics related to supernova core collapse models.The paper elaborates analytically on the capabilities of IceCube to detect supernovae through the analysis of hits in the detector correlated in space and time. These arise from supernova neutrinos interacting in the instrumented detector volume along single strings. Although the effective detection volume for such coincident hits is much smaller (?35 kton, about the scale of SuperK), a wealth of information is obtained due to the comparatively low rate of coincident noise hits. We demonstrate that a neutrino flux from a core collapse supernova will produce a signature enabling the resolution of rough spectral features and, in the case of a strong signal, providing indication on its location.We further discuss the enhanced potential of a rather modest detector extension, a denser array in the center of IceCube, within our one dimensional analytic calculation framework. Such an extension would enable the exploration of the neutrino sky above a few GeV and the detection of supernovae up to a few 100’s of kilo parsec. However, a 3-4 Mpc detection distance, necessary for routine supernova detection, demands a significant increase of the effective detection volume and can be obtained only with a more ambitious instrument, particularly the boosting of sensor parameters such as the quantum efficiency and light collection area.  相似文献   

18.
We consider the production of high energy neutrinos and cosmic rays in radio-quiet active galactic nuclei (AGN) or in the central regions of radio-loud AGN. We use a model in which acceleration of protons takes place at a shock in an accretion flow onto a supermassive black hole, and follow the cascade that results from interactions of the accelerated protons in the AGN environment. We use our results to estimate the diffuse high energy neutrino intensity and cosmic ray intensity due to AGN. We discuss our results in the context of high energy neutrino telescopes under construction, and measurements of the cosmic ray composition in the region of the “knee” in the energy spectrum at 107 GeV.  相似文献   

19.
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.  相似文献   

20.
The IceCube experiment has detected two neutrinos with energies between 1 and 10 PeV. They might have originated from Galactic or extragalactic sources of cosmic rays. In the present work we consider hadronic interactions of the diffuse very high energy cosmic rays with the interstellar matter within our Galaxy to explain the PeV neutrino events detected in IceCube. We also expect PeV gamma ray events along with the PeV neutrino events if the observed PeV neutrinos were produced within our Galaxy in hadronic interactions. PeV gamma rays are unlikely to reach us from sources outside our Galaxy due to pair production with cosmic background radiation fields. We suggest that in future with simultaneous detections of PeV gamma rays and neutrinos it would be possible to distinguish between Galactic and extragalactic origins of very high energy neutrinos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号