首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Latitudinal characteristics of ELF hiss in mid- and low-latitudes have been statistically studied by using ELF/VLF electric field spectra (50 Hz-30 kHz) from ISIS-1 and -2 received at Kashima station, Japan from 1973 to 1977. Most ISIS ELF/VLF data observed in mid- and low-latitude include ELF hiss at frequencies below a few kHz. The ELF hiss has the strongest intensity among VLF phenomena observed by the ISIS electric dipole antenna in mid- and low-latitudes, but the ELF hiss has no rising structure like the chorus in the detailed frequency-time spectrum. The ELF hiss is classified into the steady ELF hiss whose upper frequency limit is approximately constant with latitude and the ELF hiss whose upper frequency limit increases with latitude. These two types of ELF hiss occur often in medium or quiet geomagnetic activities. Sometimes there occurs a partial or complete lack of ELF hiss along an ISIS pass.Spectral shape and bandwidth of ELF hiss in the topside ionosphere are very similar to those of plasmaspheric hiss and of inner zone hiss. The occurrence rate of steady ELF hiss is about 0.3 near the geomagnetic equator and decreases rapidly with latitude around L = 3. Hence it seems likely that ELF hiss is generated by cyclotron resonant instability with electrons of several tens of keV in the equatorial outer plasmasphere beyond L = 3.Thirty-seven per cent of ELF hiss events received at Kashima station occurred during storm times and 63% of them occurred in non-storm or quiet periods. Sixty-seven per cent of 82 ELF hiss events during storm times were observed in the recovery phase of geomagnetic storms. This agrees with the previous satellite observations of ELF hiss by search coil magnetometers. The electric field of ELF hiss becomes very weak every 10 s, which is the satellite spin period, in mid- and low-latitudes, but not near the geomagnetic equator. Ray tracing results suggest that waves of ELF hiss generated in the equatorial outer plasmasphere propagate down in the electrostatic whistler mode towards the equatorial ionosphere, bouncing between the LHR reflection points in both the plasmaspheric hemispheres.  相似文献   

2.
Latitudinal distributions of narrow-band 5 kHz hisses have been statistically obtained by using VLF electric field data received from the ISIS-1 and -2 at Syowa station, Antartica and Kashima station, Japan, in order to study an origin of the narrow-band 5 kHz hisses which are often observed on the ground in mid- and low-latitudes. The result shows that the narrow-band 5 kHz hiss occurs most frequently at geomagnetically invariant latitudes from 55° to 63°, that are roughly the plasmapause latitudes at various geomagnetic activities, both in the northern and southern hemispheres.The narrow-band 5 kHz hiss seems to be generated by the cyclotron instabilities of several keV to a few ten keV electrons for the most feasible electron density of 10 cm?3?103 cm?3 in the vicinity of the equatorial plasmapause since the hotter electrons with energy of 10–100 keV are dominant just outside the plasmapause. This will be the origin of the narrow-band 5 kHz hiss observed frequently in mid- and low-latitudes.  相似文献   

3.
The particle energy required to generate the observed VLF hiss in the Jovian magnetosphere has been computed under longitudinal and transverse resonance condition. It is shown that the minimum energy required by electrons to generate VLF hiss under the longitudinal resonance condition lies in the range of 100eV–1keV for the wave frequencies of 2–10 kHz, while the corresponding energy range for the transverse resonance condition for the same frequency range comes out to be 8 keV–40 keV. Further, the average radiated power by the erenkov process in the Jupiter's magnetosphere atL=5.6 Rj by electrons of energy 10 eV, 100 eV, and 1 keV for the wave frequency of 5 kHz has also been computed.  相似文献   

4.
Intensities of auroral hiss generated by the Cerenkov radiation process by electrons in the lower magnetosphere are calculated with respect to a realistic model of the Earth's magnetosphere. In this calculation, the magnetic field is expressed by the “Mead-Fairfield Model” (1975), and a static model of the iono-magnetospheric plasma distribution is constructed with data accumulated by recent satellites (Alouette-I, -II, ISIS-I, OGO-4, -6 and Explorer 22). The energy range of hiss producing electrons and the frequency range of the calculated VLF are 100–200 keV, and 2–200 kHz, respectively. Intensities with a maximum around 20 kHz, of the order of 10?14 W/m2/Hz1 at the ground seem to be ascribable to the incoherent Cerenkov emission from soft electrons with a differential energy spectrum E?2 having an intensity of the order of 108cm?2/sec/sr/eV at 100 eV. It is shown that the frequency of the maximum hiss spectral density at geomagnetic latitudes 80° on the day-side and 70° on the night-side is around 20 kHz for the soft spectrum (~E?2) electrons, which shifts toward lower frequency (~10 kHz) for a hard spectrum (~E?1·2) electrons. The maximum hiss intensity produced by soft electrons is more than one order higher than that of hard electron produced hiss. The higher rate of hiss occurrence in the daytime side, particularly in the soft electron precipitation zone in the morning sector, and the lesser occurrence of auroral hiss in night-time sectors must be, therefore, due to the local time dependence of the energy spectra of precipiating electrons rather than the difference in the geomagnetic field and in the geoplasma distributions.  相似文献   

5.
A quasilinear model for hiss-type mid-latitude VLF emissions is presented. It can be considered as an improved version of the models which were earlier suggested by Etcheto et al. (1973) and Sazhin (1977). When using this model it is predicted that the considered emissions are excited near the inner boundary of the plasmapause by the electrons in the energy range 2–5 keV, which is compatible with the available experimental data.  相似文献   

6.
Extremely low frequency (ELF)/Very low frequency (VLF) hiss is whistler mode wave that interacts with energetic electrons in the magnetosphere. The characteristics features of ELF/VLF hiss observed at low latitude ground station Jammu (Geomag. lat. 22°16′ N, L=1.17) are reported. It is observed that most of hiss events first propagate in ducted mode along higher L-values (L = 4–5), after reaching lower edge of ionosphere excite the Earth-ionosphere waveguide and propagate towards equator to be received at low-latitude station Jammu. To understand the generation mechanism of ELF/VLF hiss, incoherent Cerenkov radiated power from the low-latitude and mid-latitude plasmasphere are evaluated. Considering this estimated power as an input for wave amplification through wave–particle interaction, the growth rate and amplification factor is evaluated which is too small to explain the observed wave intensity. It is suggested that some non-linear mechanism is responsible for the generation of ELF/VLF hiss.  相似文献   

7.
Observations and analyses of hiss events, recorded at College (dp. lat. 64.62°N) and Bar 1 (dp. lat. 70.20°N) during periods of varying auroral and geomagnetic activity, reveal three different types of events. These are (1) auroral substorm events with associated hiss bursts during disturbed period, (2) quiet-time hiss events accompanying stationary quiet auroral arcs and (3) hissless events at times of auroral and magnetic activity. Quiet-time observations seem to suggest that the substorm activity is not a necessary requirement for generating wideband hiss. On the other hand, examples of auroral and magnetic activity with complete absence of VLF hiss indicate that the ground reception of VLF/ELF natural emissions is largely controlled by propagation conditions in the ionosphere. There is either little or no correlation found between hiss observations at the two stations separated by about 600 km.  相似文献   

8.
The association between VLF hiss and auroral-light intensity has been studied for pulsating auroras by coordinated observations with a broad band VLF receiver and a low light level TV system viewing the N2+ ING emissions. Power spectral analyses of the VLF hiss and auroral-light intensity fluctuations display a common peak at 1.3 ± 0.3 Hz. Cross-spectral analysis shows that the times of the peaks in the auroral-light intensity fluctuations differ from those of the VLF hiss by times ranging between zero and 0.2 s. This result is shown to be compatible with a cyclotron resonance interaction in the vicinity of the equatorial plane. The periodicity of the intensity fluctuations can be accounted for by assuming the process is driven by echoing VLF hiss, which may be single-phase or three-phase.  相似文献   

9.
Synoptic observations made on magnetic recording tape at Huancayo, Peru, at the magnetic dip equator, during the International Geophysical Year 1957–1958, were aurally reviewed at that time and no whistlers, hiss, or other emissions were heard. In view of the more recent observation of whistlers at geomagnetic latitudes as low as 12°, and in conjunction with a study of equatorial hiss observed in the topside ionosphere, these recordings have recently been reassessed by reducing them with modern real-time, digital spectrographic equipment. Although the observations were found to be of high quality, and to show the classical features of ground-wave and sky-wave propagation of sferics and VLF transmissions, again no evidence whatsoever of whistlers, hiss, or other emissions is found. Thus it is concluded that the whistlers observed at very low latitudes do not propagate subionospherically to the equator and it is confirmed that “hybrid” whistlers must be due to subionospheric propagation across the equator of the causative sferic rather than of the short whistler.  相似文献   

10.
Based on the model calculation of VLF hiss power flux spectrum resulting from convective beam amplification of incoherent Cerenkov whistler radiation by the beam of precipitating auroral electrons, which has been developed by Maggs (1976), we examine the altitude dependence of power flux levels. Their strong altitude dependence leads us to suggest that non-linear processes are important in determining the spectrum of VLF hiss at high altitude. It is also shown that estimated power fluxes inside the electron precipitation region at low altitude might not reach as high levels as observed when the electron beam is weak. In this case, wave propagation outside of the precipitation region will account for the high power flux levels as well as significant magnetic components of VLF hiss observed especially at low altitude. In addition, we show that the transformation of the electron beam in transit to lower altitudes, determined from Liouville's theorem, may influence appreciably VLF hiss power flux spectrum. Finally, it is pointed out that two types of VLF hiss spectrum observed at the ground level can be accounted for by the difference in strength of the electron beam.  相似文献   

11.
A unique night-time natural electromagnetic disturbances in the VLF/ELF range received during a magnetically quite period at a low latitude Indian ground station, Jammu (geomag. lat. 19°26′ N, L=1.17) has been reported. During the routine observation of VLF waves at Jammu, whistlers and different types of VLF/ELF emissions such as whistlers of varying dispersion confined to a small band limited frequency range, hisslers, pulsing hiss, discrete chorus emissions of rising and falling tones with multiple bands, oscillating tone discrete emission, whistler-triggered hook and discrete chorus risers emissions, etc. have been observed simultaneously during the quiet period on a single night. Such type of unique simultaneous observations has never been reported from any of the low latitude ground stations and this is the first observation of its kind. The results are discussed in the light of recorded features of whistlers and emissions. Generation and propagation mechanism are discussed briefly. Plasma parameters are further derived from the dispersion analysis of nighttime whistlers and emissions recorded simultaneously during magnetically quiet periods.  相似文献   

12.
The behaviour of energetic electrons in the distant magnetosphere near the midnight meridian during polar substorms has been studied for the period March 5th–April 4th, 1965, using data from two end window Geiger counters flown on the IMP 2 satellite (apogee 15.8 Earth radii) and magnetic records from a chain of auroral zone stations around the world at magnetic latitudes equivalent to L = 7.4 ± 2.0.

When the satellite was in the distant radiation zone or in the plasma sheet which extends down the Earth's magnetic tail, sudden decreases in the horizontal magnetic field component at ground stations near the midnight meridian (negative magnetic bays) were followed by sudden increases in 40 keV electron fluxes (electron islands) at the satellite. When the satellite was at high latitudes in the magnetic tail ‘bays’ often were not followed by ‘islands.’ When the satellite was near the centre of the plasma sheet, energetic electron fluxes were observed even during magnetically quiet periods. The time delay between the sharp onset of magnetic bays in the auroral zone and the corresponding rapid increase in energetic electron intensity at the satellite, typically some tens of minutes, was least when the satellite was close to the Earth and increased with its increasing radial distance from the Earth. The delay was also a function of distance of the satellite from the centre of the plasma sheet, and of the magnitude of the intensity increase (smaller delays for larger intensity increases). We deduce that the disturbance producing the magnetic bays and associated particle acceleration originates fairly deep in the magnetosphere and propagates outward to higher L values, and down the plasma sheet in the Earth's magnetic tail on the dark side of the Earth. It is unlikely that the accelerated electrons are themselves drifting away from the Earth, because the apparent velocity with which the islands move away from the Earth decreases with increasing distance from the Earth.

It is suggested that the polar substorm and the associated particle acceleration are part of an impulsive ejection mechanism of magnetospheric energy into the ionosphere, rather than an impulsive injection mechanism of solar wind energy into the magnetosphere.  相似文献   


13.
Low energy precipitated electrons have been measured with high time resolution through an auroral display by a series of high geometrical factor particle counters on a ‘mother-daughter’ sounding rocket, launched during wintertime near 2100 LT from Andenes, Norway.The observations show that the 0·5–3 keV electron fluxes are anisotropically distributed, with a maximum in a direction parallel to the local geomagnetic field vector at all latitudes covered by the rocket, except within the visual auroral forms where the pitch-angle distributions are isotropic or slightly peaked in a direction normal to the geomagnetic field. The 1 and 3 keV electron fluxes are weakly anticorrelated in the vicinity of the arcs, where also the 3 keV electron flux displays a more structured variation than the 0.5 and 1 keV electron fluxes.  相似文献   

14.
Rising frequency VLF emissions having unusually high frequency and exhibiting banded structure were recorded between 14.55 and 15.30 U.T. on 28 June 1972 by the VLF goniometer receiver at Halley, Antarctica. The risers were split into two frequency groups, one with frequencies in the range 6.0–7.7 kHz and the other with frequencies between 7.8 and 9.4 kHz, the former being more numerous. The gap between the lower and upper frequency risers is superficially similar to, though at a higher frequency than, the missing bands in emissions observed by satellites. However, it is found to be unlikely that the risers received at Halley can be explained by any of the mechanisms advanced to explain the banded satellite-observed emissions. Several other explanations are considered and it is shown that the most likely is partial suppression by magnetospheric line radiation propagating in the same duct.The risers are interpreted as being generated via cyclotron resonance with counterstreaming electrons. A computer program based on Helliwell's (1967) phenomenological theory is used to determine the generation region and electron energies involved.Both frequency groups of risers display a 4 min periodicity in occurrence. It is shown that this time period is consistent with that required to replenish the flux of resonant electrons, by eastwards drift into the duct, after the emissions have been quenched due to the reduction of the flux by pitch-angle diffusion into the loss cone.  相似文献   

15.
Pitch-angle diffusion coefficients of electrons have been calculated for resonant interaction with electrostatic electron-cyclotron harmonic (ECH) waves using quasi linear diffusion theory. Calculations have been performed for the planets Earth and Jupiter at three radial distances for each planet. Electron precipitation fluxes have also been calculated and compared with observed fluxes. At Earth, electrons of energy ≤200 eV may be put on strong diffusion at L = 10. At lower L values, observed ECH wave amplitudes are insufficient to put electrons on strong diffusion. At Jupiter, electrons can be put on strong diffusion at all L values. However, the energy of electrons which may be put on strong diffusion decreases from about 1 keV at L = 7 to ~100 eV at L = 17. It is concluded that ECH waves may be partly responsible for diffuse auroral precipitation of low energy electrons at Jupiter for lower L values. At Earth contribution of ECH waves to diffuse aurora is quite small.  相似文献   

16.
Employing a realistic ionospheric model and a suitable energetic electron spectra, detailed power calculations are carried out to confirm the generation mechanism of low-latitude VLF emissions observed both in the satellites and on the ground. Raypaths of the radiated waves are also calculated to account for the attenuation and spreading losses. It is shown that 100 eV?1 keV electrons radiating incoherently in the Cerenkov mode are the main sources of these emissions.  相似文献   

17.
During its passage through the geomagnetic tail, the Moon encounters the plasma sheet. Properties of plasma sheet electrons and protons, first detected at lunar distances by Explorer 35, are described. The electrons have a rapidly fluctuating non-Maxwellian energy distribution with a mean energy of several hundred electron volts and density ç 0.2 cm?3. The protons, of energy ç 1 keV, were usually detected above the instrument background when flowing towards the Earth at ç 200 km s?1. Implications for migration of grains on the lunar surface are also pointed out and it is suggested that strong terrestrial polar winds in the early history of the Earth-Moon system may have caused some erosion of the Earth-facing side of the Moon, and that gravitational shielding of interplanetary rock flux by the Earth may also be an explanation of the relative smoothness of the front side.  相似文献   

18.
It is shown that VLF emissions are greatly affected by the polar cap absorption caused by the bombardment of solar protons. Characteristics of the PCA effect on VLF emissions are examined and they are in agreement with those obtained by other studies, such as the polar blackout and the cosmic radio absorption. Therefore, the earlier conclusion that the occurrence frequency of VLF emissions decreases in high latitudes during magnetic storms is likely to be due to the PCA effect.

Taking this PCA effect into account, it is established that an enhancement of occurrence of VLF emissions occurs at geomagnetic latitudes lower than 67° during the magnetic storm. This suggests that enhanced VLF emissions during geomagnetic storms are generated in the co-rotating region of the magnetosphere or in the outer radiation belt, but not in the tail region.  相似文献   


19.
We have reported for the first time total seven strong events of drifting ELF/VLF discrete emissions observed on 28th–29th April, 1990 in the pre-midnight sector at Varanasi (Geomag. lat. 14°55′N, long. 154°E, L = 1.07). The events exhibit a regular increasing as well as decreasing frequency drifts and are mainly discrete periodic emissions of riser, faller and hook types observed during a geomagnetic storm period, with minimum Dst-index ?98 nT and K p -index ≥ 5. The frequency drift in ELF/VLF emissions at low latitudes seems to be a rare phenomenon. The repetition period and the frequency drift rate have been evaluated for all the recorded events. The frequency drifts have been interpreted in terms of a combined effect of L-shell drift of interacting energetic electrons and the change in convection electric fields during the storm developments. The computed maximum spectral power density $ \left\langle {B_{f}^{2} } \right\rangle_{\max } $ of the wave varies between 1.8 × 10?21 and 4.08 × 10?22 Gauss2/Hz, whereas frequency drift rates are in agreement with the observed values.  相似文献   

20.
In the midday sector, the hard electron precipitation and the associated patchy aurora at geomagnetic latitude ~65° are the only auroral features (? 20 keV) located equatorward of the dayside auroral oval during intense and moderately disturbed geomagnetic conditions. We identify the patchy luminosity in the midday and late morning sectors as the active mantle aurora. The mantle aurora was found by Sanford (1964) using the IGY-IGC auroral patrol spectrographs and which was thought to be non-visual. The precipitating electrons reside mostly at energies greater than several keV with an energy flux of ? 0.1 erg cm?2 s?1 sr?1 during geomagnetic active periods. This hard precipitation occurs in a region which is asymmetric in L.T. with respect to the noon meridian. The region extends from the morning sector to only early afternoon (13–14 M.L.T.) along the geomagnetic latitude circle of about 65–70°. The model calculation indicates that the mantle aurora is produced by the precipitation of the energetic electrons which drift azimuthally from the plasma sheet at the midnight sector to the dayside magnetopause during magnetospheric substorms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号