首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. Rybák 《Solar physics》1994,152(1):161-166
Fe XIV 5303 coronal emission line observations have been used for the estimation of the rotation behaviour of the green solar corona. A homogeneous data set, created from measurements carried out within the framework of the world-wide coronagraphic network, has been examined with a correlation analysis to reveal the averaged synodic rotation period as a function of latitude and time over the epoch from 1964 to 1989.The values of the synodic rotation period obtained for the epoch 1964–1989 for the whole range of latitudes and for a latitude band ±30° are 28.18±0.12 days and 27.65±0.13 days, respectively. The differential rotation of the green solar corona was confirmed, together with local maxima of the rotation period at latitudes 45° and -60° and a minimum at the equator, but no clear cyclic variation of the rotation has been found for the epoch examined.  相似文献   

2.
Tikhomolov  Evgeniy 《Solar physics》2001,199(1):165-186
In the traditional axisymmetric models of the 11-year solar cycle, oscillations of the magnetic fields appear in the background of nonoscillating (over time scale considered) turbulent velocity fields and differential rotation. In this paper, an alternative approach is developed: The excitation of magnetic oscillations with the 22-year period is the consequence of hydrodynamic oscillations with the 11-year period. In the excitation of hydrodynamic oscillations, two processes taking place in high latitudes near the interface between the convective and radiative zones play a key role. One is forcing of the westerly zonal flow, the conditions for which are due to deformation of the interfacial surface. The other process is the excitation of a shear instability of zonal flow as a consequence of a strong radial gradient of angular velocity. The development of a shear instability at some stage brings about the disruption of the forcing of differential rotation. In the first (hydrodynamic) part of the paper, the dynamics of axisymmetric flows near the bottom of the convection zone is numerically simulated. Forcing of differential rotation having velocity shear in latitude and the existence of solutions in the form of torsional waves with the 11-year oscillation period are shown. In the second part the dynamics of the magnetic field is studied. The most pronounced peculiarities of the solutions are the existence of forced oscillations with the 22-year period and the drift of the toroidal magnetic field component from the mid latitudes to the equator. In high and low latitudes after cycle maximum, the toroidal component is of opposite sign in accordance with observations. In the third part, the transport of momentum from the bottom of the convection zone to the outer surface by virtue of diffusivity is considered. The existence of some sources of differential rotation in the convection zone is not implied. A qualitative correspondence of the differential rotation profile in the bulk of the convection zone and on its outer surface to experimental data is shown. The time correspondence between torsional and magnetic oscillations is also in accordance with observations.  相似文献   

3.
Measurements from the Galileo probe suggest that the zonal winds are deep rooted. Jupiter's high rotation rate makes it likely that the whole outer molecular H/He layer is involved in these long-lived jet flows. Assuming that the primary flows are geostrophic, and that the banded surface structure stretches right through the molecular H/He layer, we examine the conditions for such flows to be stable. As a first step, the linear stability of some prescribed banded zonal flows in a rotating spherical shell is explored. Incompressibility is assumed for simplicity, and the boundary condition is stress-free. We compare solutions for two aspect ratios, appropriate for the molecular H/He layers of Jupiter and Saturn, and two Ekman numbers (E=10−2 and E=10−4). Convective and shear flow instabilities compete in our system. The convective instabilities are of the well-known columnar structure. Shear flow instabilities for the larger Ekman number are similar to the Taylor-Couette instability in rotating annuli. At the lower Ekman number, shear flow instabilities adopt a geostrophic character, assuming the form of rotating columns, similar to the convective instabilities. While the convective instability always sets in outside the tangent cylinder, shear instability can become unstable inside the tangent cylinder. If even a weak zonal flow is present inside the tangent cylinder, the flow is unstable to shear instability. This offers an explanation why the jovian zonal jet structure is much weaker at the higher latitudes that correspond to locations inside the tangent cylinder.  相似文献   

4.
Nonlinear calculations for the three-dimensional and time dependent convective flow in a plane parallel layer of fluid are carried out with parameter values appropriate for supergranules on the Sun. A rotation vector is used which is tilted from the vertical to represent various latitudes. For the incompressible fluid used in this model the solar rotation produces turning motions sufficient to completely twist a fluid column in about one day. It is suggested that this effect will be greatly enhanced in a compressible fluid. The tilted rotation vector produces anisotropies and systematic Reynolds stresses which drive mean flows. The resulting flows produce a rotation rate which increases inward and a meridional circulation with poleward flow along the outer surface.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
The differential rotation of the large-scale photospheric magnetic field has been investigated with an autocorrelation technique using synoptic charts of the photospheric field during the interval 1959–66. Near the equator the rotation period of the field is nearly the same as the rotation rate of long-lived sunspots studied by Newton and Nunn. Away from the equatorial zone the field has a significantly shorter rotation period than the spots. Over the entire range of latitudes investigated the average rotation period of the photospheric magnetic field was about 1 1/4 days less than the average rotation period of the material observed with Doppler shifts by Livingston and by Howard and Harvey. Near the equator the photospheric field results agree with the results obtained from recurrent sunspots, while above 15° the photospheric field rotation rates agree with the rotation rates of the K corona and the filaments.  相似文献   

6.
Published spectroscopic measurements of solar rotation are analyzed to show that when the rotation velocity increases at high latitudes it tends to decrease at low latitudes, and conversely. The high latitude velocities typically vary over only 20% of the range of those near the equator and the smallest variations of all occurred near latitude 60° during the rising portion of the previous solar cycle. The anticorrelation is consistent with a recent suggestion that differential rotation on the sun arises from photospheric wind systems whose strength is determined, ultimately, by oscillations within the Sun.  相似文献   

7.
The synodic rotation period and power spectra of solar microwave sources are investigated using accurate data in the interval 1956 to 1970. The variation of the approximate 27 day period is obtained over a complete solar cycle and is thought to be a result of the latitude change over the solar cycle of the origins of the radio emissions. High resolution power spectra have also been obtained and revealed the existence of a double peaked line near 160 day period. This line is attributed to changes in either the Eartn's heliographic latitudes or the Earth's inclination to the Earth-Sun line.  相似文献   

8.
UARS SOLSTICE data have been subjected to Fourier and wavelet analyses in order to search for the signature of the solar rotation law in the disk‐integrated irradiance of UV lines. Lyman‐α, Mg II, and Ca II data show a different behaviour. In the SOLSTICE data there are significant temporal variations of the rotation rate of the UV tracers over 5—6 years. Often several distinct rotation periods appear almost simultaneously. Beside the basic period around 27 days there are signals at 32—35 days corresponding to the rotation rate at very high latitudes. For more than 5 years during another period of the solar cycle the rotational behaviour is quite different; there is an indication of differential rotation of active regions in these Ca II ground‐based data. The data contain a wealth of information about the solar differential rotation, but it proves difficult to disentangle the effects of the different emitting sources.  相似文献   

9.
Autocorrelation analyses of K-coronameter observations made at Haleakala and Mauna Loa, Hawaii, during 1964–1967 have established average yearly rotation rates of coronal features as a function of latitude and height above the limb. At low latitudes the corona was found to rotate at the same rate as sunspots but at higher latitudes was consistently faster than the underlying photosphere. There were differences as large as 3–4% in the rate at specific latitudes from year to year and between the two hemispheres. In 1967 a nearly constant rotation was found for heights ranging from 1.125 to 2.0 R 0. For 1966 there was a more complicated pattern of height dependence, with the rate generally decreasing with height at low latitudes and increasing at high latitudes.At Hawaii Institute of Geophysics.  相似文献   

10.
We cross-correlate pairs of Mt. Wilson magnetograms spaced at intervals of 24–38 days to investigate the meridional motions of small magnetic features in the photosphere. Our study spans the 26-yr period July 1967–August 1993, and the correlations determine longitude averages of these motions, as functions of latitude and time. The time-average of our results over the entire 26-yr period is, as expected, antisymmetric about the equator. It is poleward between 10° and 60°, with a maximum rate of 13 m s–1, but for latitudes below ±10° it is markedly equatorward, and it is weakly equatorward for latitudes above 60°. A running 1-yr average shows that this complex latitude dependence of the long-term time average comes from a pattern of motions that changes dramatically during the course of the activity cycle. At low latitudes the motion is equatorward during the active phase of the cycle. It tends to increase as the zones of activity move toward the equator, but it reverses briefly to become poleward at solar minimum. On the poleward sides of the activity zones the motion is most strongly poleward when the activity is greatest. At high latitudes, where the results are more uncertain, the motion seems to be equatorward except around the times of polar field reversal. The difference-from-average meridional motions pattern is remarkably similar to the pattern of the magnetic rotation torsional oscillations. The correspondence is such that the zones in which the difference-from-average motion is poleward are the zones where the magnetic rotation is slower than average, and the zones in which it is equatorward are the zones where the rotation is faster.Our results suggest the following characterization: there is a constant and generally prevailing motion which is perhaps everywhere poleward and varies smoothly with latitude. On this is superimposed a cycle-dependent pattern of similar amplitude in which the meridional motions of the small magnetic features are directed away from regions of magnetic flux concentration. This is suggestive of simple diffusion, and of the models of Leighton (1964) and Sheeley, Nash, and Wang (1987). The correspondence between the meridional motions pattern and the torsional oscillations pattern in the magnetic rotation suggests that the latter may be an artifact of the combination of meridional motion and differential rotation.  相似文献   

11.
An analysis of Ca II spectroheliograms obtained at Catania Observatory in the period 1967–1970 shows that plages rotate - in their first four days of lifetime - with a latitudinal differential rotation profile steeper than for older objects.A closer inspection reveals that plages slow down with age in some latitude strips, and accelerate in some others. That makes the profiles of old and young objects highly different from each other. In particular, the empirical laws of solar rotation usually adopted, appear to be inadequate to describe so complex a phenomenon as the rotation of these magnetic features. A close correspondence has been found between the latitudes at which plages accelerate (slow down) and the latitudes of westward (eastward) streams (Howard and LaBonte, 1980).Some implications of these results, in the light of the theory of a direct coupling of magnetic features to deep layers, are discussed.In the years concerned, Ca-plages of whatever age show differential rotation profiles steeper than in other phases of the solar cycle.  相似文献   

12.
It is known for over two decades now that the rotation of the photospheric magnetic fields determined by two different methods of correlation analysis leads to two vastly differing rotation laws - one the differential and the other rigid rotation. Snodgrass and Smith (2001) reexamining this puzzle show that the averaging of the correlation amplitudes can tilt the final profile in favour of rigid rotation whenever the contribution of the rigidly rotating large-scale magnetic structures (the plumes) to the correlation dominates over that of the differentially rotating small-scale and mesoscale features. We present arguments to show that the large-scale unipolar structures in latitudes >40 deg, which also show rigid rotation (Stenflo, 1989), are formed mainly from the intranetwork magnetic elements (abbreviated as IN elements). We then estimate the anchor depths of the various surface magnetic elements as locations of the Sun's internal plasma layers that rotate at the same rate as the flux elements, using the rotation rates of the internal plasma layers given by helioseismology. We infer that the anchor depths of the flux broken off from the decay of sunspot active regions (the small-scale and mesoscale features that constitute the plumes) are located in the shallow layers close to the solar surface. From a similar comparison with helioseismic rotation rates we infer that the rigid rotation of the large-scale unipolar regions in high latitudes could only be coming from plasma layers at a radial distance of about 0.66–0.68 R from the Sun's centre. Using Stenflo's (1991) ‘balloon man’ analogy, we interpret these layers as the source of the magnetic flux of the IN elements. If so, the IN flux elements seem to constitute a fundamental component of solar magnetism.  相似文献   

13.
Durrant  C.J.  Mccloughan  J. 《Solar physics》2004,219(1):55-78
We describe the application of the synoptic transport equation to simulate the temporal evolution of the magnetic flux over the solar surface. This provides a means of predicting each day both the synoptic maps for the Carrington rotation starting the next day and the instantaneous map of the solar flux over the whole solar surface for the next day. The reliability of the predicted synoptic maps is tested by comparing the locations of the zero-flux contour with those of the observed maps produced by the National Solar Observatory, Kitt Peak and with the locations of Hα filaments measured on filtergrams obtained by the Big Bear Solar Observatory. We conclude that the best match at high latitudes is obtained by long-term simulations (over 20 rotations) with flux updates each rotation between latitudes ± 60°. We illustrate the use of the simulations to describe the evolution of the polar fields at the time of the polarity reversals in Cycle 23. The reconstruction of the instantaneous maps is tested by comparison with full-disk magnetograms. The method provides a simple means of estimating the large-scale flux distribution over the whole surface. It does not take account of flux emerging after the central meridian passage each rotation so it is only approximate in the activity belts but provides a reliable map beyond those latitudes.  相似文献   

14.
The time and latitude change of the flux and rotation of magnetic-field imbalance structures with various strengths has been determined from observations at the Kitt-Peak observatory for 26 years. The regularities revealed during the work allow this change to be explained as follows. The structure of the imbalance of the magnetic field of a particular strength emerges at the photosphere surface while possessing a rotation typical for the area of this structure formation. After this, the structure begins to drift along the meridian (toward the pole or toward the equator) while rotating at the same velocity and occupying several interval of latitudes. Having displaced to the poles from the emerging latitude by about 20° (or more, depending on the rotation period), structures that have a certain significant period cease to exist as a whole, giving rise to other structures with other significant rotation periods. From here it follows that the differential rotation of the layers responsible for forming the imbalance structures of fields with various strengths can be determined from the dependence of the rotation period on the latitude of the emergence of the imbalance structure.  相似文献   

15.
Observations of the magnetic fields in the polar regions of the Sun are presented for the period 1960–1971. At the start of this interval the fields at the two poles were consistently of opposite sign and averaged around 1 G. Early in 1961 the field in the south decreased suddenly and the field in the north decreased in strength slowly over the next few years. By the mid-1960's the fields at both poles were quite weak and irregular. Throughout the period of these observations the fields at both poles often showed a remarkable tendency to vary in unison. About the middle of 1971 the north polar field became significantly positive, first at lower latitudes, then above 70 °. An autocorrelation analysis of the polar fields in the north shows a weak rotation peak, indicating significant features in these regions. A comparison of field strengths in the east and west quadrants in the north suggests that even at the extreme polar latitudes the following polarity fields are inclined slightly toward the rotation and the preceding polarity field lines are inclined slightly to trail the rotation.  相似文献   

16.
The differential rotation and sector structure of solar magnetic fields has been studied using digitized data on photospheric magnetic fields recorded at the Mount Wilson Observatory during the period August 1959–May 1970. The power spectra show considerable power in high-frequency peaks, corresponding to harmonic components with wavelengths less than 1/10 solar rotation. Calculations for a series of shorter time intervals show how the distribution of power over the various harmonic components in the sector pattern varies strongly with the solar cycle. The equatorial rotation rate of solar magnetic fields is about 0.1 km s-1 faster than that of the photospheric plasma determined from Doppler shifts. It is shown that the Doppler measurements mainly refer to the non-network regions. The differential flow of 0.1 km s-1 forms streamlines around the magnetic fine structures. The different rotation rates of various solar features can be explained in terms of the rotation rates of magnetic and non-magnetic regions. The rotation rates of the magnetic fields in active and quiet regions agree at the equator. At higher latitudes, however, the background fields deviate less from solid-body rotation, indicating that their source is below the deepest layers to which the sunspot magnetic fields penetrate. This suggests that turbulent diffusion of the field in old active regions may not be the main source for the background magnetic field, but that the source is located close to a rigidly rotating solar core with a synodic rotation period of 26.87 days.  相似文献   

17.
Long-lived brightness structures in the solar electron corona persist over many solar rotation periods and permit an observational determination of coronal magnetic tracer rotation as a function of latitude and height in the solar atmosphere. For observations over 1964–1976 spanning solar cycle 20, we compare the latitude dependence of rotation at two heights in the corona. Comparison of rotation rates from East and West limbs and from independent computational procedures is used to estimate uncertainty. Time-averaged rotation rates based on three methods of analysis demonstrate that, on average, coronal differential rotation decreases with height from 1.125 to 1.5 R S. The observed radial variation of differential rotation implies a scale height of approximately 0.7 R S for coronal differential rotation.Model calculations for a simple MHD loop show that magnetic connections between high and low latitudes may produce the observed radial variations of magnetic tracer rotation. If the observed tracer rotation represents the rotation of open magnetic field lines as well as that of closed loops, the small scale height for differential rotation suggests that the rotation of solar magnetic fields at the base of the solar wind may be only weakly latitude dependent. If, instead, closed loops account completely for the radial gradients of rotation, outward extrapolation of electron coronal rotation may not describe magnetic field rotation at the solar wind source. Inward extrapolations of observed rotation rates suggest that magnetic field and plasma are coupled a few hundredths of a solar radius beneath the photosphere.  相似文献   

18.
From a set of high-resolution spectral observations of late type giant stars we used Doppler imaging to derive time-series temperature maps of the stellar surfaces. Using these temperature maps, it is possible to track the temporal changes of the spot features and derive estimates of the strength and sign of the differential surface rotation of these stars. Looking into the latitudinal changes of the surface maps, it is also possible to derive meridional flows on these stars. But due to the lower accuracy of the latitudes of the reconstructed spot features, the data requirements are higher than for the detection of differential rotation. Nevertheless, a correlation between the differential rotation and meridional flow estimates is suggested. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The differential rotation of the solar corona has been analyzed using as the input data the brightness of the coronal green line Fe xiv 530.3 nm for more than five activity cycles. It is found that the character of rotation of the solar corona changes during the activity cycle. Approximately at the middle of the descending branch the differential rotation is weakly pronounced, while the greatest differential gradient is observed at the ascending branch and, occasionally, at the maximum of the cycle. An explanation of this difference has been suggested. The total rotation rate of the corona can be represented as a superposition of two rotation modes (components) – the fast and slow ones. The synodic period of the fast mode near the equator is about 27 days, increasing slightly with latitude. The synodic period of the slow mode exceeds 30 days. The changing relative fraction of these two modes results in variation of the latitude dependence of the observed rotation rate during the activity cycle. The characteristics of two principal types of differential rotation of the solar corona have been determined. The first type consists of the fast mode alone and is established approximately at the middle of the descending branch of the cycle. The second type is the sum of both modes with the fast mode dominating at low latitudes and the slow mode at high latitudes. The results obtained can be used for in-depth study of interaction of the velocity field and dynamo mechanism in the Sun and stars.  相似文献   

20.
Surface magnetic fields during the solar activity cycle   总被引:1,自引:0,他引:1  
We examine magnetic field measurements from Mount Wilson that cover the solar surface over a 13 1/2 year interval, from 1967 to mid-1980. Seen in long-term averages, the sunspot latitudes are characterized by fields of preceding polarity, while the polar fields are built up by a few discrete flows of following polarity fields. These drift speeds average about 10 m s-1 in latitude - slower early in the cycle and faster later in the cycle - and result from a large-scale poleward displacement of field lines, not diffusion. Weak field plots show essentially the same pattern as the stronger fields, and both data indicate that the large-scale field patterns result only from fields emerging at active region latitudes. The total magnetic flux over the solar surface varies only by a factor of about 3 from minimum to a very strong maximum (1979). Magnetic flux is highly concentrated toward the solar equator; only about 1% of the flux is at the poles. Magnetic flux appears at the solar surface at a rate which is sufficient to create all the flux that is seen at the solar surface within a period of only 10 days. Flux can spread relatively rapidly over the solar surface from outbreaks of activity. This is presumably caused by diffusion. In general, magnetic field lines at the photospheric level are nearly radial.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号