首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The age distribution of galactic clusters is obtained from well-observed star clusters, and it is concluded that the observed age distribution of clusters within 1000 pc is not seriously affected by the selection effects. If we assume that the rate of formation of clusters is constant, the observed age distributions of clusters for Trumpler's different richness classes have been obtained; and it is found that the rich clusters have longer lifetimes than the poor clusters.The lifetimes of clusters log(1/2) for different richness classes obtained in the present study differ significantly from the lifetimes obtained by Janes and Adler (1982), because the lifetimes obtained by Janes and Adler may have been affected by the age-dependent selection effects which grow with increasing distance. From the observed age distribution of all clusters within 1000 pc the results obtained in the present study are in close agreement with the lifetimes obtained by Wielen (1971a).  相似文献   

2.
With three virially stableN-body simulations of Wielen, we show that use of the expression for the total mass derived from averaged quantities (velocity dispersion and mean harmonic radius) yields an overestimate of the mass by as much as a factor of 2–3, and use of the heaviest mass sample gives an underestimate by a factor of 2–3. The estimate of the mass using mass weighted quantities (i.e., derived from the customary definition of kinetic and potential energies) yields a better value irrespective of mass sample as applied to late time intervals of the models (three two-body relaxation times). The uncertainty is at most 50%. This suggests that it is better to employ the mass weighted expression for the mass when determining cluster masses. The virial ratio, which is a ratio of the mass weighted/averaged expression for the potential energy, is found to vary between 1 and 2. We conclude that ratios for observed clusters 4–10 cannot be explained even by the imprecision of the expression for the mass using averaged quantities, and certainly implies the presence of unseen matter. Total masses via customary application of the virial theorem are calculated for 39 clusters, and total masses for 12 clusters are calculated by a variant of the usual application. The distribution of cluster masses is also presented and briefly discussed. Mass segregation in Wielen's models is studied in terms of the binding energy per unit mass of the heavy sample compared with the light sample. The general absence of mass segregation in relaxed clusters and the large virial discrepancies are attributed to a population of many low-mass objects that may constitute the bulk mass of clusters of galaxies.  相似文献   

3.
From a comparative study between stellar and gas data it is seen that turbulent and hydrodynamic motions in the Galaxy are common to both types of materials:
  1. Galactic clusters have sizes and intrinsic dispersions compatible with the modified form of the Kolmogorov law seen in molecular clouds: undimensional velocities σ(km s?1)=0.54d 0.38 (pc). This indicates that ‘typic’ clusters were born from ‘typic’ dark clouds as these of the Lynds's catalogue (diametersd<10 pc, dispersions σ<1.5 km s?1 hydrogen densitiesn H>200 atom cm?3). These clouds have mass enough to form galactic clusters (1000–3000M ).
  2. The cluster formation is related to the supersonic range of the Kolmogorov relationship σ(d>1 pc) while the AFGKM stars are related to the subsonic range of the same relationship σ(d<0.3 pc), the intermediate transition zone is probably related to OB stars and/or trapezia.
  3. The effects of the magnetic fields in the clouds are also discussed. It seems to be that in the clouds the magnetic energy does not exceed the kinetic energy (proportional toσ 2(d)) and that this determinates the freezing criteria. The hypotheses introduced here can be checked with 21 cm Zeeman splitting.
  4. Low-density globular clusters are also coherent with the Kolmogorov relationship. Some hypotheses about their origin and the type of clouds where they were born are discussed. This last part of the study lets open the possibility of further studies about evolution of globular clusters.
  相似文献   

4.
Star clusters are born in a highly compact configuration, typically with radii of less than about 1 pc roughly independently of mass. Since the star formation efficiency is less than 50 per cent by observation and because the residual gas is removed from the embedded cluster, the cluster must expand. In the process of doing so it only retains a fraction f st of its stars. To date there are no observational constraints for f st, although N -body calculations by Kroupa, Aarseth & Hurley suggest it to be about 20–30 per cent for Orion-type clusters. Here we use the data compiled by Testi et al., Testi, Palla & Natta and Testi, Palla & Natta for clusters around young Ae/Be stars and by de Wit et al. and de Wit et al. around young O stars and the study of de Zeeuw et al. of OB associations and combine these measurements with the expected number of stars in clusters with primary Ae/Be and O stars, respectively, using the empirical correlation between maximal stellar mass and star cluster mass of Weidner & Kroupa. We find that   f st < 50  per cent with a decrease to higher cluster masses/more massive primaries. The interpretation would be that cluster formation is very disruptive. It appears that clusters with a birth stellar mass in the range  10–103 M  keep at most 50 per cent of their stars.  相似文献   

5.
6.
A study of circumnuclear star-forming regions (CNSFRs) in several early-type spirals has been carried out in order to investigate their main properties: stellar and gas kinematics, dynamical masses, ionising stellar masses, chemical abundances and other properties of the ionised gas. Both high resolution (R~20,000) and moderate resolution (R~5000) have been used. In some cases, these regions (about 100–150 pc in size) are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ5007 Å lines. The twice ionised oxygen, on the other hand, shows velocity dispersions comparable to those of stars. We have applied the virial theorem to estimate dynamical masses of the clusters, assuming that the systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the full CNSFRs. We obtain oxygen abundances which are comparable to those found in high-metallicity disc Hii regions from direct measurements of electron temperatures and consistent with solar values within the errors. The region with the highest oxygen abundance is R3+R4 in NGC3504, 12+log(O/H)=8.85, about 1.5 times solar. The derived N/O ratios are, on average, larger than those found in high-metallicity disc Hii regions, and they do not seem to follow the trend of N/O vs. O/H which marks the secondary behaviour of nitrogen. On the other hand, the S/O ratios span a very narrow range—between 0.6 and 0.8 times solar. Compared to high-metallicity disc Hii regions, CNSFRs show values of the O23 and the N2 parameters whose distributions are shifted to lower and higher values, respectively. Hence, even though their derived oxygen and sulphur abundances are similar, higher values would in principle be obtained for the CNSFRs if pure empirical methods were used to estimate abundances. CNSFRs also exhibit lower ionisation parameters than their disc counterparts, as derived from [Sii]/[Siii]. Their ionisation structure also seems to be different, with CNSFRs showing radiation-field properties more similar to Hii galaxies than to disc high-metallicity Hii regions.  相似文献   

7.
We analyze the encounters of the neutron star (pulsar) Geminga with open star clusters in the OB association Ori OB1a through the integration of epicyclic orbits into the past by taking into account the errors in the data. The open cluster ASCC21 is shown to be the most probable birthplace of either a single progenitor star for the Geminga pulsar or a binary progenitor system that subsequently broke up. Monte Carlo simulations of Geminga-ASCC21 encounters with the pulsar radial velocity V r = ?100±50 km s?1 have shown that close encounters could occur between them within ≤10 pc at about t = ?0.52 Myr. In addition, the trajectory of the neutron star Geminga passes at a distance of ≈25 pc from the center of the compact OB association λ Ori at about t = ?0.39 Myr, which is close to the age of the pulsar estimated from its timing.  相似文献   

8.
9.
We derive fundamental parameters of the embedded cluster DBSB 48 in the southern nebula Hoffleit 18 and the very young open cluster Trumpler 14, by means of deep JHKs infrared photometry. We build colour–magnitude and colour–colour diagrams to derive reddening and age, based on main sequence and pre-main sequence distributions. Radial stellar density profiles are used to study cluster structure and guide photometric diagram extractions. Field-star decontamination is applied to uncover the intrinsic cluster sequences in the diagrams. Ages are inferred from K-excess fractions. A prominent pre-main sequence population is present in DBSB 48, and the K-excess fraction fK = 55 ± 6% gives an age of 1.1 ± 0.5 Myr. A mean reddening of AKs=0.9±0.03 was found, corresponding to AV = 8.2 ± 0.3. The cluster CMD is consistent with the far kinematic distance of 5 kpc for Hoffleit 18. For Trumpler 14 we derived similar parameters as in previous studies in the optical, in particular an age of 1.7 ± 0.7 Myr. The fraction of stars with infrared excess in Trumpler 14 is fK = 28 ± 4%. Despite the young ages, both clusters are described by a King profile with core radii Rcore = 0.46 ± 0.05 pc and Rcore = 0.35 ± 0.04 pc, respectively, for DBSB 48 and Trumpler 14. Such cores are smaller than those of typical open clusters. Small cores are probably related to the cluster formation and/or parent molecular cloud fragmentation. In DBSB 48, the magnitude extent of the upper main sequence is ΔKs ≈ 2 mag, while in Trumpler 14 it is ΔKs ≈ 5 mag, consistent with the estimated ages.  相似文献   

10.
In many different galactic environments the cluster initial mass function (CIMF) is well described by a power law with index ?2. This implies a linear relation between the mass of the most massive cluster (M max?) and the number of clusters. Assuming a constant cluster formation rate and no disruption of the most massive clusters it also means that M max? increases linearly with age when determining M max? in logarithmic age bins. We observe this increase in five out of the seven galaxies in our sample, suggesting that M max? is determined by the size of the sample. It also means that massive clusters are very stable against disruption, in disagreement with the mass-independent disruption (MID) model. For the clusters in M51 and the Antennae galaxies, the size-of-sample prediction breaks down around 106 M, suggesting that this is a physical upper limit to the masses of star clusters in these galaxies. In this method there is a degeneracy between MID and a CIMF truncation. We show how the cluster luminosity function can serve as a tool to distinguish between the two.  相似文献   

11.
Updated proper motions for 328 probable members of the Praesepe are used to determine the distance to this open cluster by Hertzsprung's geometric method. The cluster distance was found to be r=171±15 pc, which corresponds to the distance modulus $V_0 - M_V = 6\mathop .\limits^m 16 \pm 0.19$ . The distance scale for open clusters is discussed.  相似文献   

12.
On the basis of our age estimations of Population I pulsating stars in our Galaxy (Tsvetkov, 1986a), the mean ages of 6 open star clusters containing 21 Delta Scuti-variables and of 8 star clusters and associations containing 13 classical cepheids, have been evaluated. These mean cluster age estimations weighted according to the probabilities for different evolutionary phases of the pulsating stars, are obtained in the evolutionary track systems of Iben (1967) and Paczyski (1970); the cluster ages are larger in the former system. Our results are compared with those obtained from various methods by other authors. Clusters with classical cepheids and with Delta Scuti-stars have ages, respectively, in the ranges 107–108 years and 106–109 years. It is shown that the use of simple period-age(-colour) relations for Population I pulsating stars gives sufficiently accurate cluster age estimations. By use of our period-age relations for classical cepheids (Tsvetkov, 1986a), the mean ages of 56 other star clusters and associations in our Galaxy, the Magellanic Clouds, and M 31 galaxy have been estimated in both systems of tracks. The results are generally in agreement with those obtained from various methods by other authors. The use of Population I pulsating stars in star clusters and associations is one of the simplest and most easily applied methods for determining cluster ages; but there are some limitations in its application.  相似文献   

13.
A large ring, 50 pc diameter, of H+[Nii] emission in the LMC has been investigated using several instruments. It is suggested that stellar winds from O and B stars could play a vital role in the formation of the structures revealed.  相似文献   

14.
The open star cluster NGC 6067 was investigated by the strip method on charts of photographs with different exposure times taken with the 1-m Schmidt telescope of the European Southern Observatory. Because of the large distance (1820 pc) of the cluster its luminosity function is known up to date only betweenM v =–4.5 andM v =+1.5. In this paper it is continued toM v =4.4 and further extrapolated by means of 2 variants. The cluster contains 419 respectively 476 stars with total masses of 1453 resp. 1483. On account of its radius of 5.9 pc the cluster is a rather extended object, which can be described by the generalized density law of Schuster withn=4.42 and the central star density 8.9 stars pc–3. The mean velocity of the stars amounts to 1.03 km s–1, the massbrightness relation is 0.031 in solar units.

Mitteilungen Serie A.  相似文献   

15.
The Monoceros ring, a circular optical nebulosity 3°.5 in diameter and centred at R.A.=6h37m, Dec.=6°30 (l ii =205°.5,b ii =0°.2) is in good structural agreement with radio observations. A neutral hydrogen shell is also accurately projected on the ring. These observations are consistent with the Monoceros ring being a supernova remnant 90–100 pc in diameter expanding at about 45 km s–1 and having an age of the order of a million years. Bright Hii regions containing early-type stars (e.g., galactic cluster NGC 2244 in the Rosette nebula) and extremely young stars of the OB association Mon OB2 lie at the edges of the ring. The positional and temporal coincidence of the Mon OB2 association with a supernova remnant suggests that probably the star formation in this region is induced or speeded up by the passage of a supernova shock wave through the clumpy interstellar medium.  相似文献   

16.
We report the analysis of the young star clusters NGC 1960, NGC 2453 and NGC 2384 observed in the J (1.12 μm), H (1.65 μm) and K′ (2.2 μm) bands. Estimates of reddening, distance and age as E(B?V)=0.25, d=1380 pc and t=31.6 to 125 Myr for NGC 1960, E(B?V)=0.47, d=3311 pc and t=40 to 200 Myr for NGC 2453 and E(B?V)=0.25, d=3162 pc and t=55 to 125 Myr for NGC 2384 have been obtained. Also, we have extended the color–magnitude diagrams of these clusters to the fainter end and thus extended the luminosity functions to fainter magnitudes. The evolution of the main sequence and luminosity functions of these clusters have been compared with themselves as well as Lyngå 2 and NGC 1582.  相似文献   

17.
This paper deals with the determination of the three-dimensional distribution of flare stars in the Pleiades cluster. For this purpose a one-dimensional distribution is first constructed from the observed two-dimensional distribution of the stars. It is shown that reliable construction of one dimensioned distribution requires solution of the Abel equation. The last one used to determine the dependence of the true three-dimensional distribution of the density of flare stars on distance from the center of the cluster. This reveals a spherical layer of width 0.5 pc (2.8 R 3.5 pc) with a deficit in the number of flare stars. A profile of the three-dimensional density distribution of flare stars is constructed in the region of deficit. The characteristics of this region are described.  相似文献   

18.
The observed distribution of young open clusters is far from uniform. Statistics shows that, when age, spatial distribution and kinematics are considered simultaneously, they tend to appear in clumps. These young cluster groups or families constitute unambiguously coeval, genetically related complexes associated to the underlying spiral structure. In this paper, we derive detailed physical properties for one of them: the Cassiopeia–Perseus family. With a diameter of about 600 pc, it is located 2 kpc from the Sun, embedded in the Perseus arm, and probably includes 10–20 members. It began to form 20–40 Myr ago although we find distinctive evidence for at least three generations of star formation organized in two distinct fronts, with the oldest clusters located at lower Galactic longitude than the youngest. The plane roughly defined by the structure is inclined ~30° to the Galactic disk with most candidate members located below the disk and moving away from it. Our results for this cluster of clusters suggest that, within a coherent cloud complex, the first generation of star formation is triggered by the shock wave induced by a spiral arm. The second and subsequent generations are sustained by ionization fronts and supernova shocks created by the evolution of the first generation of massive stars. In this particular case, the front moves with average velocity of about 70 km/s in the direction of increasing Galactic longitude. The Cassiopeia–Perseus family and related objects appear to be a close relative of the cluster complexes found in the spiral galaxy M51 or perhaps a younger analog of the Gould Belt.  相似文献   

19.
Dense molecular clouds within the Taurus and NGC 2264 regions have undergone gravitational collapse and fragmentation to form groups of low mass (1M ) T-Tauri stars which are still embedded within the clouds and which are kinematically associated with them. Molecular column densities on the order of 1014 cm–2 are inferred from the emission lines of OH and NH3. Emission line widths are 2 km s–1 and the antenna beamwidths include linear extents of order 0.1 pc. The OH emission appears to be in a condition of local thermodynamic equilibrium, and it cannot arise from circumstellar sheils similar to those surrounding the masing infrared stars. The OH and NH3 emission occurs in clouds of 1 pc in extent with optical depths of 0.1 to 1.0 and excitation temperatures of the order of 10 K. The molecular clouds have radii of 0.5 pc, molecular hydrogen densities of 4000 cm–3, masses of 100 solar masses, and kinetic temperatures of 20 K. The observed data are not inconsistent with the molecular clouds being in a state of hydrostatic equilibrium.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

20.
Recent high resolution near infrared (HST-NICMOS) and mm-interferometric imaging have revealed dense gas and dust accretion disks in nearby ultra-luminous galactic nuclei. In the best studied ultraluminousIR galaxy, Arp 220, the 2m imaging shows dust disks in both of the merging galactic nuclei and mm-CO line imaging indicates molecular gasmasses 109M for each disk. The two gas disks in Arp 220 are counterrotating and their dynamical masses are 2×109 M , that is, only slightly largerthan the gas masses. These disks have radii 100 pc and thickness 10-50 pc. The high brightness temperatures of the CO lines indicatethat the gas in the disks has area filling factors 25-50% and mean densitiesof 104 cm-3. Within these nuclear disks, the rate of massive star formation is undoubtedly prodigious and, given the high viscosity of the gas, there will also be high radial accretion rates, perhaps 10 M yr -1. If this inflow persists to very small radii, it is enough to feed even the highest luminosity AGNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号