首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Share  G.H.  Murphy  R.J.  Dennis  B.R.  Schwartz  R.A.  Tolbert  A.K.  Lin  R.P.  Smith  D.M. 《Solar physics》2002,210(1-2):357-372
The RHESSI high-resolution spectrometer detected γ-ray lines and continuum emitted by the Earth's atmosphere during impact of solar energetic particles in the south polar region from 16:00–17:00 UT on 21 April 2002. The particle intensity at the time of the observation was a factor of 10–100 weaker than previous events when gamma-rays were detected by other instruments. This is the first high-resolution observation of atmospheric gamma-ray lines produced by solar energetic particles. De-excitation lines were resolved that, in part, come from 14N at 728, 1635, 2313, 3890, and 5106 keV, and the 12C spallation product at ∼ 4439 keV. Other unresolved lines were also detected. We provide best-fit line energies and widths and compare these with moderate resolution measurements by SMM of lines from an SEP event and with high-resolution measurements made by HEAO 3 of lines excited by cosmic rays. We use line ratios to estimate the spectrum of solar energetic particles that impacted the atmosphere. The 21 April spectrum was significantly harder than that measured by SMM during the 20 October 1989 shock event; it is comparable to that measured by Yohkoh on 15 July 2000. This is consistent with measurements of 10–50 MeV protons made in space at the time of the γ-ray observations.  相似文献   

2.
The flare catalogue of the Yohkoh mission is compiled and linked to this article as an electronic supplement. For showing flare characteristics over wide energy range concisely, we provide the images of Hard X-ray Telescope (HXT) and the Soft X-ray Telescope (SXT), and the spectra of Hard X-ray Spectrometer (HXS) and Gamma-Ray Spectrometer (GRS) with the Wide Band Spectrometer (WBS) time profiles. The energy versus pulse height (PH) data channels in HXS and GRS are re-calibrated by using the data of the whole mission period. Secular gain changes are recognized in HXS, and the characteristics of power-law flare spectra simultaneously observed by HXT and HXS confirms the trend. The GRS gains are different for the flare observations during the previous maximum and for the current maximum. The total of 33 γ -ray events are observed, and for 12 of them γ-ray flare spectra are obtained. Electronic supplementary material to this article is available at and is accessible for authorized users.  相似文献   

3.
LS 5039 is the only X-ray binary persistently detected at TeV energies by the Cherenkov HESS telescope. It is moreover a γ-ray emitter in the GeV and possibly MeV energy ranges. To understand important aspects of jet physics, like the magnetic field content or particle acceleration, and emission processes, such as synchrotron and inverse Compton (IC), a complete modeling of the multiwavelength data is necessary. LS 5039 has been detected along almost all the electromagnetic spectrum thanks to several radio, infrared, optical and soft X-ray detections. However, hard X-ray detections above 20 keV have been so far elusive and/or doubtful, partly due to source confusion for the poor spatial resolution of hard X-ray instruments. We report here on deep (∼300 ks) serendipitous INTEGRAL hard X-ray observations of LS 5039, coupled with simultaneous VLA radio observations. We obtain a 20–40 keV flux of 1.1±0.3 mCrab (5.9 (±1.6) ×10−12 erg cm−2 s−1), a 40–100 keV upper limit of 1.5 mCrab (9.5×10−12 erg cm−2 s−1), and typical radio flux densities of ∼25 mJy at 5 GHz. These hard X-ray fluxes are significantly lower than previous estimates obtained with BATSE in the same energy range but, in the lower interval, agree with extrapolation of previous RXTE measurements. The INTEGRAL observations also hint to a break in the spectral behavior at hard X-rays. A more sensitive characterization of the hard X-ray spectrum of LS 5039 from 20 to 100 keV could therefore constrain key aspects of the jet physics, like the relativistic particle spectrum and the magnetic field strength. Future multiwavelength observations would allow to establish whether such hard X-ray synchrotron emission is produced by the same population of relativistic electrons as those presumably producing TeV emission through IC.  相似文献   

4.
《Experimental Astronomy》2009,23(1):91-120
The primary scientific goal of the GRIPS mission is to revolutionize our understanding of the early universe using γ-ray bursts. We propose a new generation gamma-ray observatory capable of unprecedented spectroscopy over a wide range of γ-ray energies (200 keV–50 MeV) and of polarimetry (200–1000 keV). The γ-ray sensitivity to nuclear absorption features enables the measurement of column densities as high as 1028cm − 2. Secondary goals achievable by this mission include direct measurements of all types of supernova interiors through γ-rays from radioactive decays, nuclear astrophysics with massive stars and novae, and studies of particle acceleration near compact stars, interstellar shocks, and clusters of galaxies. See for the authors’ affiliations.  相似文献   

5.
Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data.  相似文献   

6.
7.
The famous extreme solar and particle event of 20 January 2005 is analyzed from two perspectives. Firstly, using multi-spectral data, we study temporal, spectral, and spatial features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of solar energetic particles (SEP) arriving at Earth, i.e., acceleration in flares, or shocks ahead of coronal mass ejections (CMEs). Our analysis shows that all electromagnetic emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. In particular, a huge (≈ 105 sfu) radio burst with a high frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in very strong magnetic fields. Thus, protons and electrons responsible for various flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the ground-level enhancement (GLE), and highest-energy gamma-rays identified with π 0-decay emission, are similar and closely correspond in time. The origin of the π 0-decay gamma-rays is argued to be the same as that of lower-energy emissions, although this is not proven. On the other hand, we estimate the sky-plane speed of the CME to be 2 000 – 2 600 km s−1, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We therefore conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the major flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred nearly simultaneously within the flare region. However, our analysis does not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate at later stages of the SEP event. S.N. Kuznetsov deceased 17 May 2007.  相似文献   

8.
The origin of relativistic solar protons during large flare/CME events has not been uniquely identified so far. We perform a detailed comparative analysis of the time profiles of relativistic protons detected by the worldwide network of neutron monitors at Earth with electromagnetic signatures of particle acceleration in the solar corona during the large particle event of 20 January 2005. The intensity – time profile of the relativistic protons derived from the neutron monitor data indicates two successive peaks. We show that microwave, hard X-ray, and γ-ray emissions display several episodes of particle acceleration within the impulsive flare phase. The first relativistic protons detected at Earth are accelerated together with relativistic electrons and with protons that produce pion-decay γ rays during the second episode. The second peak in the relativistic proton profile at Earth is accompanied by new signatures of particle acceleration in the corona within ≈1R above the photosphere, revealed by hard X-ray and microwave emissions of low intensity and by the renewed radio emission of electron beams and of a coronal shock wave. We discuss the observations in terms of different scenarios of particle acceleration in the corona.  相似文献   

9.
The SOLAR-A spacecraft has spectroscopic capabilities in a wide energy band from soft X-rays to gamma-rays. The Wide Band Spectrometer (WBS), consisting of three kinds of spectrometers, soft X-ray spectrometer (SXS), hard X-ray spectrometer (HXS) and gamma-ray spectrometer (GRS), is installed on SOLAR-A to investigate plasma heating, high-energy particle acceleration, and interaction processes. SXS has two proportional counters and each counter provides 128-channel pulse height data in the 2–30 keV range every 2 s and 2-channel pulse count data every 0.25 s. HXS has a NaI scintillation detector and provides 32-channel pulse height data in the 20–400 keV range every 1 s and 2-channel pulse count data every 0.125 s. GRS has two identical BGO scintillation detectors and each detector provides 128-channel pulse height data in the 0.2–10 MeV range every 4 s and 4-channel pulse count data (0.2–0.7, 0.7–4, 4–7, and 7–10 MeV) every 0.25–0.5 s. In addition, each of the BGO scintillation detectors provides 16-channel pulse height data in the 8–100 MeV range every 4 s and 2-channel pulse count data (8–30 and 30–100 MeV) every 0.5 s. The SXS observations enable one to study the thermal evolution of flare plasma by obtaining time series of electron temperatures and emission measures of hot plasma; the HXS observations enable one to study the electron acceleration and heating mechanisms by obtaining time series of the electron spectrum; and the GRS observations enable one to study the high-energy electron and ion acceleration and interaction processes by obtaining time series of electron and ion spectra.After the launch the name of SOLAR-A has been changed to YOHKOH.  相似文献   

10.
The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI)   总被引:2,自引:0,他引:2  
《Solar physics》2002,210(1-2):3-32
RHESSI is the sixth in the NASA line of Small Explorer (SMEX) missions and the first managed in the Principal Investigator mode, where the PI is responsible for all aspects of the mission except the launch vehicle. RHESSI is designed to investigate particle acceleration and energy release in solar flares, through imaging and spectroscopy of hard X-ray/gamma-ray continua emitted by energetic electrons, and of gamma-ray lines produced by energetic ions. The single instrument consists of an imager, made up of nine bi-grid rotating modulation collimators (RMCs), in front of a spectrometer with nine cryogenically-cooled germanium detectors (GeDs), one behind each RMC. It provides the first high-resolution hard X-ray imaging spectroscopy, the first high-resolution gamma-ray line spectroscopy, and the first imaging above 100 keV including the first imaging of gamma-ray lines. The spatial resolution is as fine as ∼ 2.3 arc sec with a full-Sun (≳ 1°) field of view, and the spectral resolution is ∼ 1–10 keV FWHM over the energy range from soft X-rays (3 keV) to gamma-rays (17 MeV). An automated shutter system allows a wide dynamic range (>107) of flare intensities to be handled without instrument saturation. Data for every photon is stored in a solid-state memory and telemetered to the ground, thus allowing for versatile data analysis keyed to specific science objectives. The spin-stabilized (∼ 15 rpm) spacecraft is Sun-pointing to within ∼ 0.2° and operates autonomously. RHESSI was launched on 5 February 2002, into a nearly circular, 38° inclination, 600-km altitude orbit and began observations a week later. The mission is operated from Berkeley using a dedicated 11-m antenna for telemetry reception and command uplinks. All data and analysis software are made freely and immediately available to the scientific community. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022428818870  相似文献   

11.
The behavior of solar energetic particles (SEPs) in a shock – magnetic cloud interacting complex structure observed by the Advanced Composition Explorer (ACE) spacecraft on 5 November 2001 is analyzed. A strong shock causing magnetic field strength and solar wind speed increases of about 41 nT and 300 km s−1, respectively, propagated within a preceding magnetic cloud (MC). It is found that an extraordinary SEP enhancement appeared at the high-energy (≥10 MeV) proton intensities and extended over and only over the entire period of the shock – MC structure passing through the spacecraft. Such SEP behavior is much different from the usual picture that the SEPs are depressed in MCs. The comparison of this event with other top SEP events of solar cycle 23 (2000 Bastille Day and 2003 Halloween events) shows that such an enhancement resulted from the effects of the shock – MC complex structure leading to the highest ≥10 MeV proton intensity of solar cycle 23. Our analysis suggests that the relatively isolated magnetic field configuration of MCs combined with an embedded strong shock could significantly enhance the SEP intensity; SEPs are accelerated by the shock and confined into the MC. Further, we find that the SEP enhancement at lower energies happened not only within the shock – MC structure but also after it, probably owing to the presence of a following MC-like structure. This is consistent with the picture that SEP fluxes could be enhanced in the magnetic topology between two MCs, which was proposed based on numerical simulations by Kallenrode and Cliver (Proc. 27th ICRC 8, 3318, 2001b).  相似文献   

12.
A brief summary is presented of requirements for the measurements of extragalactic γ-ray lines. The electron-positron annihilation line at 511 keV represents the best prospect, and although this line is greatly broadened in active galactic nuclei, a narrow line should be present in clusters of galaxies and radio lobes as a result of prior AGN activity. The strongest fluxes should be of the order of 10−4 photons cm−2 s−1 from the closest extended sources.  相似文献   

13.
For the case of Tycho’s supernova remnant (SNR) we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is so close to the shock radius that it can only be explained by efficient CR acceleration which in turn makes the medium more compressible. Together with the recently determined new value E sn=1.2×1051 erg of the SN explosion energy this also confirms our previous conclusion that a TeV γ-ray flux of (2–5)×10−13 erg/(cm2 s) is to be expected from Tycho’s SNR. Chandra measurements and the HEGRA upper limit of the TeV γ-ray flux together limit the source distance d to 3.3≤d≤4 kpc.  相似文献   

14.
In the inner regions of an accretion disc around a black hole, relativistic protons can interact with ambient matter to produce electrons, positrons and γ-rays. The resultant steady-state electron and positron particle distributions are self-consistently computed taking into account Coulomb and Compton cooling,  e e+  pair production (due to γ–γ annihilation) and pair annihilation. While earlier works used the diffusion approximation to obtain the particle distributions, here we solve a more general integro-differential equation that correctly takes into account the large change in particle energy that occurs when the leptons Compton scatter off hard X-rays. Thus this formalism can also be applied to the hard state of black hole systems, where the dominant ambient photons are hard X-rays. The corresponding photon energy spectrum is calculated and compared with broad-band data of black hole binaries in different spectral states. The results indicate that the γ-ray spectra  ( E > 0.8 MeV)  of both the soft and hard spectral states and the entire hard X-ray/γ-ray spectrum of the ultrasoft state could be due to p–p interactions. These results are consistent with the hypothesis that there always exists in these systems a γ-ray spectral component due to p–p interactions that can contribute between 0.5 and 10 per cent of the total bolometric luminosity. The model predicts that GLAST would be able to detect black hole binaries and provide evidence for the presence of non-thermal protons, which in turn would give insight into the energy dissipation process and jet formation in these systems.  相似文献   

15.
On 27th December 2004 SGR 1806–20, one of the most active Soft γ-ray Repeaters (SGRs), displayed an extremely rare event, also known as giant flare, during which up to 1047 ergs were released in the ∼1–1000 keV range in less than 1 s. Before and after the giant flare we carried out IR observations by using adaptive optics (NAOS-CONICA) mounted on VLT which provided images of unprecedented quality (FWHM better than 0.1″). We discovered the likely IR counterpart to SGR 1806–20 based on positional coincidence with the VLA uncertainty region and flux variability of a factor of about 2 correlated with that at higher energies. Moreover, by analysing the Rossi-XTE/PCA data we have discovered rapid Quasi-Periodic Oscillations (QPOs) in the pulsating tail of the 27th December 2004 giant flare of SGR 1806–20. QPOs at ∼92.5 Hz are detected in a 50 s interval starting 170 s after the onset of the giant flare. These QPOs appear to be associated with increased emission by a relatively hard unpulsed component and are seen only over phases of the 7.56 s spin period pulsations away from the main peak. QPOs at ∼18 and ∼30 Hz are also detected ∼200–300 s after the onset of the giant flare. This is the first time that QPOs are unambiguously detected in the flux of a Soft Gamma-ray Repeater, or any other isolated neutron star. We interpret the highest QPOs in terms of the coupling of toroidal seismic modes with Alfvén waves propagating along magnetospheric field lines. The lowest frequency QPO might instead provide indirect evidence on the strength of the internal magnetic field of the neutron star.   相似文献   

16.
Wang  Shujuan  Yan  Yihua  Zhao  Ruizhen  Fu  Qijun  Tan  Chengming  Xu  Long  Wang  Shijin  Lin  Huaan 《Solar physics》2001,204(1-2):153-164
25 MHz–7.6 GHz global and detailed (fine structure – FS) radio spectra are presented, which were observed in the NOAA 9077 active region for the Bastille Day (14 July 2000) flare at 10:10–11:00 UT. Besides broadband radio bursts, high-resolution dynamic spectra reveal metric type II burst, decimetric type IV burst and various decimetric and microwave FSs, such as type III bursts, type U bursts, reverse-slope (RS)-drifting burst, fiber bursts, patch and drifting pulsation structure (DPS). The peak-flux-density spectrum of the radio bursts over the range 1.0–7.6 GHz globally appears as a U-shaped signature. Analyzing the features of backbone and herringbones of the type II burst, the speeds of shock and relevant energetic electron beams were estimated to be 1100 km s−1 and 58 500 km s−1, respectively. Also the time sequence of the radio emission is analyzed by comparing with the hard X-rays (HXRs) and the soft X-rays (SXRs) in this flare. After the maxima of the X-rays, the radio emission in the range 1.0–7.6 GHz reached maxima first at the higher frequency, then drifted to the lower frequency. This comparison suggested that the flare included three successive processes: firstly the X-rays rose and reached maxima at 10:10–10:23 UT, accompanied by fine structures only in the range 2.6–7.6 GHz; secondly the microwave radio emission reached maxima accompanied by many fine structures over the range 1.0–7.6 GHz at 10:23–10:34 UT; then a decimetric type IV burst and its associated FSs (fibers) in the range 1.0–2.0 GHz appeared after 10:40 UT.  相似文献   

17.
Using the Submillimeter Array (SMA), we have obtained high angular-resolution (∼1″) interferometric maps of the submillimeter (0.88 mm) continuum and CO J=3–2 line from IRAS 22036+5306 (I 22036), a bipolar pre-planetary nebula (PPN) with knotty jets discovered in our HST SNAPshot survey of young PPNe. In addition, we have obtained supporting lower-resolution (∼10″) 2.6 mm continuum and CO, 13CO J=1–0 observations with the Owens Valley Radio Observatory (OVRO) interferometer. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I 22036, implying a very substantial mass (0.02–0.04M ) of large (i.e., radius ≳1 mm), cold (≲50 K) dust grains associated with I 22036’s toroidal waist. The CO J=3–2 observations show the presence of a very fast (∼220 km s−1), highly collimated, massive (0.03M ) bipolar outflow with a very large scalar momentum (about 1039 g cm s−1), and the characteristic spatio-kinematic structure of bow-shocks at the tips of this outflow. The fast outflow in I 22036, as in most PPNe, cannot be driven by radiation pressure. The large mass of the torus suggests that it has most likely resulted from common-envelope evolution in a binary, however it remains to be seen whether or not the time-scales required for the growth of grains to millimeter sizes in the torus are commensurate with such a formation scenario. The presence of the torus should facilitate the formation of the accretion disk needed to launch the jet. We also find that the 13C/12C ratio in I 22036 is very high (0.16), close to the maximum value achieved in equilibrium CNO-nucleosynthesis (0.33). The combination of the high circumstellar mass (i.e., in the torus and an extended dust shell inferred from ISO far-infrared spectra) and the high 13C/12C ratio in I 22036 provides strong support for this object having evolved from a massive (≳4M ) progenitor in which hot-bottom-burning has occurred.  相似文献   

18.
Recent accelerator data based parameterization of the inclusive cross section (cs) forπ0 production in hadronic collisions and an explicit incorporation of the finiteness of the relevant projectile hadron spectrum suggest a significant steepening in the spectrum (by as much as 0.4 in the spectral index) of the secondaryγ-ray towards the end of the spectrum. We emphasize here that this spectral steepening in conjunction with the possibility that in the bright X-ray binaries the maximum energy to which theγ-ray producing progenitor protons may be accelerated is only ∼ l0 PeV, may imply an effective efficiency forγ-ray production,ε, as reckoned by the PeV arrays, one or two orders smaller than the previous estimates. To explain the genesis of a given PeV photon flux from an X-ray binary, one, therefore, has to. accordingly consider a much higher value of the progenitor proton beam luminosity,L p . This requirement may raise further questions regarding the actual genesis of PeVγ-rays in X-ray binaries, or alternatively, on the veracity of the high values of the PeV photon fluxes reported by earlier experiments.  相似文献   

19.
Using a multi-component model to describe the γ-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of π0 emisson alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened π0 decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this γ-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the π0 decay emission, demonstrating effectively the diagnostic capabilities of the π0 decay γ-rays. The spectral index derived from the γ-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5–0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.  相似文献   

20.
We discuss the implications of the recent X-ray and TeV γ-ray observations of the PSR B1259–63 system (a young rotation powered pulsar orbiting a Be star) for the theoretical models of interaction of pulsar and stellar winds. We show that previously considered models have problems to account for the observed behaviour of the system. We develop a model in which the broad band emission from the binary system is produced in result of collisions of GeV–TeV energy protons accelerated by the pulsar wind and interacting with the stellar disk. In this model the high energy γ-rays are produced in the decays of secondary neutral pions, while radio and X-ray emission are synchrotron and inverse Compton emission produced by low-energy (≤100 MeV) electrons from the decays of secondary charged π ± mesons. This model can explain not only the observed energy spectra, but also the correlations between TeV, X-ray and radio emission components.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号