首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The Lockne crater in Sweden is a marine‐target crater, formed in a shelf sea, approximately 460 Ma ago. The crater structure consists of an inner crater surrounded by an outer, inclined surface that extends to almost 12 km from the center. Marine craters differ in several respects from craters formed on land. One special feature is the formation of resurge gullies excavated by the erosional force of the resurging sea water after the impact. The formation of these gullies strongly depends on the ratio crater‐rim height to water depth, as well as on the size of the impact structure. Such gullies are known from very few marine‐target craters. At the Lockne impact site, four gullies are identified, each of which cuts radially through the rim of the outer crater. The rapid collapse of that part of the crater cavity, which formed in the seawater, resulted in forceful flooding of the crater. The resurging seawater not only contained fallback‐ejecta; on its way towards the cavity on the sea‐bottom it incorporated fractured lithologies from the sea‐bottom as well. This entrained material disintegrated during transport and constitutes today the dominantly monomict lower part of the resurge sequence. The resurge flood was highly turbulent, highly erosive, and developed to a probable hyperconcentrated flow or a possible water flood. The erosion in the gullies proceeded as headward erosion down to the transition zone between the brecciated and the less disintegrated crystalline basement.  相似文献   

2.
Målingen is the 0.7 km wide minor crater associated to the 10 times larger Lockne crater in the unique Lockne–Målingen doublet. The craters formed at 458 Ma by the impact of a binary asteroid related to the well-known 470 Ma Main Belt breakup event responsible for a large number of Ordovician craters and fossil meteorites. The binary asteroid struck a target sequence including ~500 m of sea water, ~80 m of limestone, ~30 m of dark mud, and a peneplainized Precambrian crystalline basement. Although the Lockne crater has been extensively studied by core drillings and geophysics, little is known about the subsurface morphology of Målingen. We performed magnetic susceptibility and remanence, as well as density, measurements combined with gravity, and magnetic field surveys over the crater and its close vicinity as a base for forward magnetic and gravity modeling. The interior of the crater shows a general magnetic low of 90–100 nT broken by a clustered set of high-amplitude, short wavelength anomalies caused by bodies of mafic rock in the target below the crater and as allogenic blocks in the crater infill. The gravity shows a general −1.4 mgal anomaly over the crater caused by low-density breccia infill and fractured crystalline rocks below the crater floor. The modeling also revealed a slightly asymmetrical shape of the crater that together with the irregular ejecta distribution supports an oblique impact from the east, which is consistent with the direction of impact suggested for the Lockne crater.  相似文献   

3.
Abstract— The Lockne and Tvären craters formed about 455 million years ago in an epicontinental sea where seawater and mainly limestones covered a crystalline basement. The target water depth for Tvären (apparent basement crater diameter D = 2 km) was probably not over 150 m, and for Lockne (D = 7.5 km) recent best‐fit numerical simulations suggest the target water depth of 500–700 m. Lockne has crystalline ejecta that partly cover an outer crater (14 km diameter) apparent in the target sediments. Tvären is eroded with only the crater infill preserved. We have line‐logged cores through the resurge deposits within the craters in order to analyze the resurge flow. The focus was clast lithology, frequencies, and size sorting. We divide the resurge into “resurge proper,” with water and debris shooting into the crater and ultimately rising into a central water plume, “anti‐resurge,” with flow outward from the collapsing plume, and “oscillating resurge” (not covered by the line‐logging due to methodological reasons), with decreasing flow in diverse directions. At Lockne, the deposit of the resurge proper is coarse and moderately sorted, whereas the anti‐resurge deposit is fining upwards and better sorted. The Tvären crater has a smoothly fining‐up section deposited by the resurge proper and may lack anti‐resurge deposits. At Lockne, the content of crystalline relative to limestone clasts generally decreases upwards, which is the opposite of Tvären. This may be a consequence of factors such as crater size (i.e., complex versus simple) and the relative target water depth. The mean grain size (i.e., the mean ‐phi value per meter, ø) and standard deviation, i.e., size sorting (s?) for both craters, can be expressed by the equation s? = 0.60ø ? 1.25.  相似文献   

4.
Most impacts occur at an angle with respect to the horizontal plane. This is primarily reflected in the ejecta distribution, but at very low angle structural asymmetries such as elongation of the crater and nonradial development of the central peak become apparent. Unfortunately, impact craters with pristine ejecta layers are rare on Earth and also in areas with strong past or ongoing surface erosion on other planetary bodies, and the structural analysis of central peaks requires good exposures or even on‐site access to outcrop. However, target properties are known to greatly influence the shape of the crater, especially the relatively common target configuration of a weaker layer covering a more rigid basement. One such effect is the formation of concentric craters, i.e., a nested, deeper, inner crater surrounded by a shallow, outer crater. Here, we show that with decreasing impact angle there is a downrange shift of the outer crater with respect to the nested crater. We use a combination of (1) field observation and published 3‐D numerical simulation of one of the best examples of a terrestrial, concentric impact crater formed in a layered target with preserved ejecta layer: the Lockne crater, Sweden; (2) remote sensing data for three pristine, concentric impact craters on Mars with preserved ejecta layers further constraining the direction of impact; as well as (3) laboratory impact experiments, to develop the offset in crater concentricity into a complementary method to determine the direction of impact for layered‐target craters with poorly preserved ejecta layers.  相似文献   

5.
Abstract— The Lockne and Tvären craters formed in the Late Ordovician Baltoscandian epicontinental sea. Both craters demonstrate similarities concerning near‐synchronous age, target seabed, and succeeding resurge deposits; however, the water depths at the impact sites and the sizes of the craters were not alike. The post‐impact sedimentary succession of carbonates, i.e., the Dalby Limestone, deposited on top of the resurge sediments in the two craters, is nevertheless similar. At least three main facies of the Dalby Limestone were established in the Lockne crater, depending on sea‐floor topography, location with respect to the crater, and local water currents. The dominating nodular argillaceous facies, showing low values of inorganic carbon (IC), was distributed foremost in the deeper and quiet areas of the crater floor and depressions. At the crater rim, consisting of crushed crystalline basement ejecta, a rim facies with a reef‐like fauna was established, most certainly due to topographical highs and substrate‐derived nutrients. Between these facies are occurrences of a relatively thick‐bedded calcilutite rich in cephalopods (cephalopod facies). In Tvären, the lower part of the succession consists of an analogous argillaceous facies, also showing similar low IC values as in Lockne, followed by calcareous mudstones with an increase of IC. Occasionally biocalcarenites with a distinctive fauna occur in the Tvären succession, probably originating as detritus from a facies developed on the rim. They are evident as peaks in IC and lows in organic carbon (Corg). The fauna in these biocalcarenites corresponds very well with those of erratic boulders derived from Tvären; moreover, they correspond to the rim facies of Lockne except for the inclusion of photosynthesizing algae, indicating shallower water at Tvären than Lockne. Consequently, we suggest equivalent distribution patterns for the carbonates of the Dalby Limestone in Lockne and Tvären.  相似文献   

6.
The Målingen structure is an approximately 700 m wide, rimmed, sediment‐filled, circular depression in Precambrian crystalline basement approximately 16.2 km from the concentric, marine‐target Lockne crater (inner, basement crater diameter approximately 7.5 km, total diameter in sedimentary strata approximately 13.5 km). We present here results from geologic mapping, a 148.8 m deep core drilling from the center of the structure, detailed biostratigraphic dating of the structure's formation and its age correlation with Lockne, chemostratigraphy of the sedimentary infill, and indication for shock metamorphism in quartz from breccias below the crater infill. The drill core reveals, from bottom to the top, approximately 33 m of basement rocks with increased fracturing upward, approximately 10 m of polymict crystalline breccia with shock features, approximately 97 m of slumped Cambrian mudstone, approximately 4.7 m of a normally graded, polymict sedimentary breccia that in its uppermost part grades into sandstone and siltstone (cf. resurge deposits), and approximately 1.6 m of secular sediments. The combined data set shows that the Målingen structure formed in conjunction with the Lockne crater in the same marine setting. The shape and depth of the basement crater and the cored sequence of crystalline breccias with shocked quartz, slumped sediments, and resurge deposits support an impact origin. The stratigraphic and geographic relationship with Lockne suggests the Lockne and Målingen craters to be the first described doublet impact structure by a binary asteroid into a marine‐target setting.  相似文献   

7.
Abstract— Crater‐ejecta correlation is an important element in the analysis of crater formation and its influence on the geological evolution. In this study, both the ejecta distribution and the internal crater development of the Jurassic/Cretaceous Mjølnir crater (40 km in diameter; located in the Barents Sea) are investigated through numerical simulations. The simulations show a highly asymmetrical ejecta distribution, and underscore the importance of a layer of surface water in ejecta distribution. As expected, the ejecta asymmetry increases as the angle of impact decreases. The simulation also displays an uneven aerial distribution of ejecta. The generation of the central high is a crucial part of crater formation. In this study, peak generation is shown to have a skewed development, from approximately 50–90 sec after impact, when the peak reaches its maximum height of 1‐1.5 km. During this stage, the peak crest is moved about 5 km from an uprange to a downrange position, ending with a final central position which has a symmetrical appearance that contrasts with its asymmetrical development.  相似文献   

8.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   

9.
The 455 Ma old Lockne crater in central Sweden is a well-preserved and accessible instance of marine impact crater. The process of formation of the over 7 km wide crater (referred to as inner crater) in crystalline Proterozoic basement is numerically modeled under the assumption of a 45° oblique impact of an asteroid-like impactor. The 3D version of the SOVA multi-material hydrocode is used to model the shock wave propagation through the target, transient crater growth, material ejection in water and basement target, and water and fragmented rock ejecta expansion. The model results in a crater formation with the greatest ejection and melting transferred in the downrange direction. The model reproduces the growth of the water crater accompanied by the growth of a “wall” of ejected water at its outer margin. The basement ejecta are mostly trapped in this transient “water wall”. Only the largest ejected rock fragments could break through this water wall and thus reach distances farther than about 6 km from the center of the target. The model predicts approximately of impact melt formation, less than 10% of which is ejected outside of the inner (basement) crater, whereas the rest is reckoned to have remained within the inner crater. We assume that most of the ejected melt occurs as sand-sized fragments in the resurge sediments that formed subsequent to the collapse of the water crater that resulted in the powerful backflow of water. The model results are in accordance with several important details of the known geology of the crater. The model also outlines the difference in the marine crater formation processes in contrast to a crater with similar size formed on land.  相似文献   

10.
Lockne is a concentric impact structure due to a layered target where weak sediments and seawater covered a crystalline basement. A matrix‐supported, sedimentary breccia is interlayered between the crystalline breccia lens and the resurge deposits in the crater infill. As the breccia is significantly different from the direct impact breccia and the resurge deposit, we propose a separate unit name, Tramsta Breccia, based on the type locality (i.e., the LOC02 drilling at Tramsta). We use granulometry and a novel matrix line‐log method to characterize the sedimentology of the Tramsta Breccia. The obliquity of impact combined with the layered target caused an asymmetric, concentric transient crater, which upon its collapse controlled the deposition of the breccia. On the wide‐brimmed downrange side of the crater where the sedimentary target succession was removed during crater excavation, wide, overturned basement crater ejecta flaps prevented any slumping of exterior sediments. Instead, the sediments most likely originated from the uprange side where the brim was narrow and the basement crater rim was poorly developed, sediment‐rich, and relatively unstable. Here, the water cavity wall remained in closer proximity to the basement crater and, aided by the pressure of the collapsing water wall, unconsolidated black mud would flow back into the crater. The absence of interlayered resurge deposits in the Tramsta Breccia and the evidence for reworking at the contact between the overlying resurge deposits and the Tramsta Breccia indicate that the slumping was a rapid process (<75 s) terminating well before the resurge entered the crater.  相似文献   

11.
Abstract— A sequence of peat enriched with impact ejecta (allochthonous minerals and iridium) from Piila bog, 6 km away from the Kaali impact crater (island of Saaremaa, Estonia), was examined using pollen, radiocarbon, loss‐on‐ignition, and x‐ray diffraction analyses to date and assess the environmental effect of the impact. The vegetation in the surroundings of the Piila bog before the Kaali impact was a fen surrounded by forest in natural conditions. Significant changes occur in pollen accumulation and composition of pollen in the depth interval 170–178 cm, which contains above background values of iridium (up to 0.53 ppb). Two samples from the basal silt layer inside the main crater at Kaali contain 0.8 ppb of iridium, showing that iridium was present in the impact ejecta. The impact explosion swept the surroundings clean of forest shown by the threefold decrease in the total pollen influx (especially tree pollen influx), increase in influx and diversity of herb taxa, and the relative dominance of pine. Increased input of mineral matter measured by loss‐on‐ignition and the composition mineral matter (increased input of allochthonous minerals) together with an extensive layer of charcoal and wood stumps in Piila bog at the same depth interval points to an ecological catastrophe, with local impact‐induced wildfires reaching at least 6 km northwest of the epicenter. The disappearance of cereals in the pollen record suggests that farming, cultivation and possibly human habitation in the region ceased for a period of ~100 years. The meteorite explosion at Kaali ranged between the effects of Hiroshima and Tunguska. The age of the Kaali impact event is placed between 800–100 B.C. based on radiocarbon dating of the peat enriched with impact ejecta in the Piila bog.  相似文献   

12.
Abstract— We describe the results of a variety of model calculations for predictions of observable results of the LCROSS mission to be launched in 2009. Several models covering different aspects of the event are described along with their results. Our aim is to bracket the range of expected results and produce a useful guide for mission planning. In this paper, we focus on several different questions, which are modeled by different methods. The questions include the size of impact crater, the mass, velocity, and visibility of impact ejecta, and the mass and temperature of the initial vapor plume. The mass and velocity profiles of the ejecta are of primary interest, as the ejecta will be the main target of the S‐S/C observations. In particular, we focus on such quantities as the amount of mass that reaches various heights. A height of 2 km above the target is of special interest, as we expect that the EDUS impact will take place on the floor of a moderate‐sized crater ?30 km in diameter, with a rim height of 1–2 km. The impact ejecta must rise above the crater rim at the target site in order to scatter sunlight and become visible to the detectors aboard the S‐S/C. We start with a brief discussion of crater scaling relationships as applied to the impact of the EDUS second stage and resulting estimated crater diameter and ejecta mass. Next we describe results from the RAGE hydrocode as applied to modeling the short time scale (t 0.1 s) thermal plume that is expected to occur immediately after the impact. We present results from several large‐scale smooth‐particle hydrodynamics (SPH) calculations, along with results from a ZEUS‐MP hydrocode model of the crater formation and ejecta mass‐velocity distribution. We finish with two semi‐analytic models, the first being a Monte Carlo model of the distribution of expected ejecta, based on scaling models using a plausible range of crater and ejecta parameters, and the second being a simple model of observational predictions for the shepherding spacecraft (S‐S/C) that will follow the impact for several minutes until its own impact into the lunar surface. For the initial thermal plume, we predict an initial expansion velocity of ?7 km s?1, and a maximum temperature of ?1200 K. Scaling relations for crater formation and the SPH calculation predict a crater with a diameter of ?15 m, a total ejecta mass of ?106kg, with ?104kg reaching an altitude of 2 km above the target. Both the SPH and ZEUS‐MP calculations predict a maximum ejecta velocity of ?1 km s?1. The semi‐analytic Monte Carlo calculations produce more conservative estimates (by a factor of ?5) for ejecta at 2 km, but with a large dispersion in possible results.  相似文献   

13.
Abstract— Terrestrial impact structures provide field evidence for cratering processes on planetary bodies that have an atmosphere and volatiles in the target rocks. Here we discuss two examples that may yield implications for Martian craters: 1. Recent field analysis of the Ries crater has revealed the existence of subhorizontal shear planes (detachments) in the periphery of the crater beneath the ejecta blanket at 0.9–1.8 crater radii distance. Their formation and associated radial outward shearing was caused by weak spallation and subsequent dragging during deposition of the ejecta curtain. Both processes are enhanced in rheologically layered targets and in the presence of fluids. Detachment faulting may also occur in the periphery of Martian impacts and could be responsible for the formation of lobe‐parallel ridges and furrows in the inner layer of double‐layer and multiple‐layer ejecta craters. 2. The ejecta blanket of the Chicxulub crater was identified on the southeastern Yucatán Peninsula at distances of 3.0–5.0 crater radii from the impact center. Abundance of glide planes within the ejecta and particle abrasion both rise with crater distance, which implies a ground‐hugging, erosive, and cohesive secondary ejecta flow. Systematic measurement of motion indicators revealed that the flow was deviated by a preexisting karst relief. In analogy with Martian fluidized ejecta blankets, it is suggested that the large runout was related to subsurface volatiles and the presence of basal glide planes, and was influenced by eroded bedrock lithologies. It is proposed that ramparts may result from enhanced shear localization and a stacking of ejecta material along internal glide planes at decreasing flow rates when the flow begins to freeze below a certain yield stress.  相似文献   

14.
The about 10.5 km diameter Bosumtwi impact crater is one of the youngest large impact structures on Earth. The crater rim is readily noticed on topographic maps or in satellite imagery. It defines a circular basin filled by water (Lake Bosumtwi) and lacustrine sediments. The morphology of this impact structure is also characterized by a circular plateau extending beyond the rim and up to 9–10 km from the center of the crater (about 2 crater radii). This feature comprises a shallow ring depression, also described as an annular moat, and a subdued circular ridge at its outer edge. The origin of this outermost feature could so far not be elucidated based on remote sensing data only. Our approach combines detailed topographic analysis, including roughness mapping, with airborne radiometric surveys (mapping near‐surface K, Th, U concentrations) and field observations. This provides evidence that the moat and outer ring are features inherited from the impact event and represent the partially eroded ejecta layer of the Bosumtwi impact structure. The characteristics of the outer ridge indicate that ejecta emplacement was not purely ballistic but requires ejecta fluidization and surface flow. The setting of Bosumtwi ejecta can therefore be considered as a terrestrial analog for rampart craters, which are common on Mars and Venus, and also found on icy bodies of the outer solar system (e.g., Ganymede, Europa, Dione, Tethys, and Charon). Future studies at Bosumtwi may therefore help to elucidate the mechanism of formation of rampart craters.  相似文献   

15.
Abstract— We surveyed the impact crater populations of Venus and the Moon, dry targets with and without an atmosphere, to characterize how the 3‐dimensional shape of a crater and the appearance of the ejecta blanket varies with impact angle. An empirical estimate of the impact angle below which particular phenomena occur was inferred from the cumulative percentage of impact craters exhibiting different traits. The results of the surveys were mostly consistent with predictions from experimental work. Assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ, on the Moon, the following transitions occur: >?45 degrees, the ejecta blanket becomes asymmetric; >?25 degrees, a forbidden zone develops in the uprange portion of the ejecta blanket, and the crater rim is depressed in that direction; >?15 degrees, the rim becomes saddle‐shaped; >?10 degrees, the rim becomes elongated in the direction of impact and the ejecta forms a “butterfly” pattern. On Venus, the atmosphere causes asymmetries in the ejecta blanket to occur at higher impact angles. The transitions on Venus are: >?55 degrees, the ejecta becomes heavily concentrated downrange; >?40 degrees, a notch in the ejecta that extends to the rim appears, and as impact angle decreases, the notch develops into a larger forbidden zone; >?10 degrees, a fly‐wing pattern develops, where material is ejected in the crossrange direction but gets swept downrange. No relationship between location or shape of the central structure and impact angle was observed on either planet. No uprange steepening and no variation in internal slope or crater depth could be associated with impact angle on the Moon. For both planets, as the impact angle decreases from vertical, first the uprange and then the downrange rim decreases in elevation, while the remainder of the rim stays at a constant elevation. For craters on Venus >?15 km in diameter, a variety of crater shapes are observed because meteoroid fragment dispersal is a significant fraction of crater diameter. The longer path length for oblique impacts causes a correlation of clustered impact effects with oblique impact effects. One consequence of this correlation is a shallowing of the crater with decreasing impact angle for small craters.  相似文献   

16.
Abstract— Our current understanding of marine‐impact cratering processes is partly inferred from the geological structure of the Lockne crater. We present results of a mapping campaign and structural data indicating that this crater is not pristine. In the western part of the crater, pre‐impact, impact, and post‐impact rocks are incorporated in Caledonian thrust slices and are subjected to folding and faulting. A nappe outlier in the central crater depression is a relic of the Caledonian nappe cover that reached a thickness of more than 5 km. The overthrusted crater is gently deformed. Strike of strata and trend of fold axes deviate from standard Caledonian directions (northeast‐southwest). Radially oriented crater depressions, which were previously regarded as marine resurge gullies formed when resurging seawater erosively cut through the crater brim, are interpreted to be open synclines in which resurge deposits were better preserved. The presence of the impact structure influenced orogenesis due to morphological and lithological anomalies of the crater: i) a raised crater brim zone acted as an obstacle during nappe propagation, (ii) the occurrence of a central crater depression caused downward sagging of nappes, and (iii) the lack of an appropriate detachment horizon (alum shale) within the crater led to an enhanced mechanical coupling and internal deformation of the nappe and the overthrusted foreland. Preliminary results of 3‐D‐analogue experiments suggest that a circular high‐friction zone representing the crater locally hinders nappe propagation and initiates a circumferentially striking ramp fault that delineates the crater. Crustal shortening is also partitioned into the crater basement and decreases laterally outward. Deformation of the foreland affected the geometry of the detachment and could be associated with the activation of a deeper detachment horizon beneath the crater. Strain gradients both vertically and horizontally result in non‐plane strain deformation in the vicinity of the crater. The strain tensors in the hanging and foot walls may deviate up to 90° from each other and rotated by up to 45° with respect to the standard regional orientation. The observed deflection of strata and fold axes within the Lockne crater area as revealed by field mapping is in agreement with the pattern of strain partitioning shown in the analogue models.  相似文献   

17.
Cover     
Cover: Top left: Numerical model of an impact into a sandstone target. The simulation is an iSALE model that uses a material model developed and validated in MEMIN for wet and dry porous sandstones. In this simulation, 25% water saturation of the pore space is modeled. Top right: Plan view of an 18 cm diameter impact crater formed in sandstone by a 1 cm steel projectile at 3.4 km/s. (Experiment 3232) Bottom left: A high speed image of an impact of a 1.2 cm iron meteorite at 4.6 km/s into a 50% water‐saturated sandstone target (Experiment E3‐3384). The image (3.36 microseconds after impact) shows a well‐developed ejecta cone that has transitioned into the “ejecta tube,” a phenomenon that may be connected to pressure wave refl ections in the target. (High speed video courtesy of Fraunhofer EMI.) Bottom right: The experimental setup of a cratering experiment at Fraunhofer EMI’s “Space” light gas gun. The photo shows the target chamber after experiment A11‐5181. The back of a 20 cm sandstone cube that was saturated with water to 90% is visible. Three different types of ultrasound and pressure sensors are attached to the target’s surfaces that measured the pressure wave of the impact. In the background, an “ejecta catcher”, composed of Vaseline‐coated tiles and phenolic foam blocks, shows an imprint of the ejecta cone. (Photograph courtesy of Fraunhofer EMI.)  相似文献   

18.
The ≤27 m thick Vakkejokk Breccia is intercalated in autochthon Lower Cambrian along the Caledonian front north of Lake Torneträsk, Lapland, Sweden. The spectacular breccia is here interpreted as a proximal ejecta layer associated with an impact crater, probably ~2–3 km in size, located below Caledonian overthrusts immediately north of the main breccia section. The impact would have taken place in a shallow‐marine environment ~520 Ma ago. The breccia comprises i) a strongly disturbed lower polymict subunit with occasional, in themselves brecciated, crystalline mega‐clasts locally exceeding 50 m surrounded by contorted sediments; ii) a middle, commonly normally graded, crystalline‐rich, polymict subunit, in turn locally overlain by iii) a thin fine‐grained quartz sandstone, <30 cm thick. The upper sandstone is sporadically either overlain, or replaced, by a conglomerate. In progressively more distal parts of the ejecta layer, the lower subunit is better described as only slightly disturbed strata. The lower subunit is suggested to have formed by ejecta bombardment of the strata surrounding the impact crater, even causing some net outwards mobilization of the sediments. The middle subunit and the uppermost quartz sandstone are considered resurge deposits. The top conglomerate may be caused by subsequent wave reworking and slumping of material from the elevated rim. Quartz grains showing planar deformation features are present in the graded polymict subunit and the upper sandstone, that is, the inferred resurge deposits.  相似文献   

19.
Abstract— The 40 km diameter Mjølnir Crater is located on the central Barents Sea shelf, north of Norway. It was formed about 142 ± 2.6 Myr ago by the impact of a 1–2 km asteroid into the shallow shelf clays of the Hekkingen Formation and the underlying Triassic to Jurassic sedimentary strata. A core recovered from the central high within the crater contains slump and avalanche deposits from the collapse of the transient crater and central high. These beds are overlain by gravity flow conglomerates, with laminated shales and marls on top. Here, impact and post‐impact deposits in this core are studied with focus on clay mineralogy obtained from XRD decomposition and simulation analysis methods. The clay‐sized fractions are dominated by kaolinite, illite, mixed‐layered clay minerals and quartz. Detailed analyses showed rather similar composition throughout the core, but some noticeable differences were detected, including varying crystal size of kaolinite and different types of illites and illite/smectite. These minerals may have been formed by diagenetic changes in the more porous/fractured beds in the crater compared to time‐equivalent beds outside the crater rim. Long‐term post‐impact changes in clay mineralogy are assumed to have been minor, due to the shallow burial depth and minor thermal influence from impact‐heated target rocks. Instead, the clay mineral assemblages, especially the abundance of chlorite, reflect the impact and post‐impact reworking of older material. Previously, an ejecta layer (the Sindre Bed) was recognized in a nearby well outside the crater, represented by an increase in smectite‐rich clay minerals, genetically equivalent to the smectite occurring in proximal ejecta deposits of the Chicxulub crater. Such alteration products from impact glasses were not detected in this study, indicating that little, if any, impact glass was deposited within the upper part of the crater fill. Crater‐fill deposits inherited their mineral composition from Triassic and Jurassic sediments underlying the impact site.  相似文献   

20.
Abstract— The Acraman impact ejecta from Bunyeroo Gorge in the central Flinders Ranges consist of clast-bearing and sandy sublayers set in a shale host rock. A calculated transient crater diameter for the Acraman impact of at least 34 km was obtained from average thicknesses and estimated distances of the ejecta from the impact in the Gawler Ranges. The ejecta contain numerous grains of quartz and zircon that display impact-produced features, including one or more sets of decorated planar deformation features. There is also much unshocked material incorporated in the ejecta layer. The coarse-grained ejecta layer embedded within fine-grained sediments allowed easy passage for diagenetic fluids that produced a porous honeycomb structure in the clays and enhanced the content of elements such as Cu, Pb, Zn, and U. The clay fraction of the ejecta layers consists of vermiculite and kaolinite, probably formed from alteration and weathering of glassy components. It appears that quartz and zircon grains are the only remnants unaltered by diagenetic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号