首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present observations of dwarf nova oscillations (DNOs), longer-period dwarf nova oscillations (lpDNOs), and quasi-periodic oscillations (QPOs) in 13 cataclysmic variable stars. In the six systems, WW Cet, BP CrA, BR Lup, HP Nor, AG Hya and V1193 Ori, rapid, quasi-coherent oscillations are detected for the first time. For the remainder of the systems discussed, we have observed more classes of oscillations, in addition to the rapid oscillations they were already known to display, or previously unknown aspects of the behaviour of the oscillations. The period of a QPO in RU Peg is seen to change by 84 per cent over the 10 nights of the decline from outburst – the largest evolution of a QPO period observed to date. A period–luminosity relation similar to the relation that has long been known to apply to DNOs is found for lpDNOs in X Leo; this is the first clear case of the lpDNO frequency scaling with accretion luminosity. WX Hyi and V893 Sco are added to the small list of dwarf novae that have shown oscillations in quiescence.  相似文献   

2.
From archived and recent high-speed photometry of VW Hyi we find dwarf nova oscillations (DNOs) occasionally present throughout outburst, evolving from a 14.06-s period at maximum to >40 s near the end of outburst. A relatively slow increase of period is followed by a rapid increase and a subsequent decrease.
Quasi-periodic oscillations (QPOs) are seen at periods of hundreds of seconds. For the first time, the evolution of a QPO period is seen, increasing steadily during the final decline of an outburst. The occasional presence of two DNOs, separated in frequency by the QPO frequency, suggests reprocessing of the rotating DNO beam by a 'wall' rotating progradely in the disc at the QPO period.  相似文献   

3.
Dwarf nova oscillations (DNOs) have been observed in a number of cataclysmic variables. I propose that these oscillations could be produced by a non-axisymmetric bulge at the transition between the optically thick disc and the optically thin boundary layer region. This would naturally explain the observed oscillation periods and the dependence of the oscillation amplitude on photon energy. The transition radius moves inward and outward with changing mass accretion rate, which explains the correlation between period and flux, and the time-scale for period variations. The underlying cause of the non-axisymmetry that produces the oscillations is not known, so it is not possible to predict the oscillation amplitude from first principles.  相似文献   

4.
We have detected coherent oscillations, at multiple frequencies, in the line and continuum emission of the eclipsing dwarf nova V2051 Ophiuchi using the 10-m Keck II telescope. Our own novel data acquisition system allowed us to obtain very fast spectroscopy using a continuous readout of the CCD on the LRIS spectrograph. This is the first time that dwarf nova oscillations have been detected and resolved in the emission lines. The accretion disc is highly asymmetric with a stronger contribution from the blueshifted side of the disc during our observations. The disc extends from close to the white dwarf out to the outer regions of the primary Roche lobe.
Continuum oscillations at 56.12 s and its first harmonic at 28.06 s are most likely to originate on the surface of a spinning white dwarf with the fundamental period corresponding to the spin period. Balmer and helium emission lines oscillate with a period of 29.77 s at a mean amplitude of 1.9 per cent. The line kinematics and the eclipse constraints indicate an origin in the accretion disc at a radius of 12±2 R wd. The amplitude of the emission-line oscillation modulates (0–4 per cent) at a period of 488 s, corresponding to the Kepler period at R =12 R wd. This modulation is caused by the beating between the white dwarf spin and the orbital motion in the disc.
The observed emission-line oscillations cannot be explained by a truncated disc as in the intermediate polars. The observations suggest a non-axisymmetric bulge in the disc, orbiting at 12 R wd, is required. The close correspondence between the location of the oscillations and the circularization radius of the system suggests that stream overflow effects may be of relevance.  相似文献   

5.
6.
The dwarf nova oscillations observed in cataclysmic variable (CV) stars are interpreted in the context of a low-inertia accretor model, in which accretion on to an equatorial belt of the white dwarf primary causes the belt to vary its angular velocity. The rapid deceleration phase is attributed to propellering. Evidence that temporary expulsion rather than accretion of gas occurs during this phase is obtained from the large drop in extreme ultraviolet flux.
We show that the quasi-periodic oscillations are most probably caused by a vertical thickening of the disc, moving as a travelling wave near the inner edge of the disc. This alternately obscures and 'reflects' radiation from the central source, and is visible even in quite low inclination systems. A possible excitation mechanism, caused by winding up and reconnection of magnetic field lines, is proposed.
We apply the model, deduced largely from VW Hyi observations, to re-interpret observations of SS Cyg, OY Car, UX UMa, V2051 Oph, V436 Cen and WZ Sge. In the last of these we demonstrate the existence of a 742-s period in the light curve, arising from obscuration by the travelling wave, and hence show that the two principal oscillations are a dwarf nova oscillation and its reprocessed companion.  相似文献   

7.
We present new observations of the rapid oscillations in the dwarf nova VW Hyi, made late in outburst. These dwarf nova oscillations (DNOs) increase in period until they reach 33 s, when a transition to a strong 1st harmonic and weak fundamental takes place. After further period increase, the 2nd harmonic appears; often all three components are present simultaneously. This 1:2:3 frequency suite is similar to what has been seen in some neutron star and black hole X-ray binaries, but has not previously been seen in a cataclysmic variable. When studied in detail, the fundamental and 2nd harmonic vary similarly in phase, but the 1st harmonic behaves independently, though keeping close to twice the frequency of the fundamental. The fundamental period of the DNOs, as directly observed or inferred from the harmonics, increases to ∼100 s before the oscillation disappears as the star reaches quiescence. Its maximum period is close to that of the 'longer-period' DNOs observed in VW Hyi. The quasi-periodic oscillations (QPOs), which have fundamental periods 400–1000 s, behave in the same way, showing 1st and 2nd harmonics at approximately the same times as the DNOs. We explore some possible models. One in which the existence of the 1st harmonic is due to the transition from viewing a single accretion region to viewing two regions, and the rate of accretion on to the primary is modulated at the frequency of the 1st harmonic, as in the 'beat frequency model', can generate the suite of DNO frequencies observed. But the behaviour of the QPOs is not yet understood.  相似文献   

8.
We report on the discovery of a 25.5-min superhump period for the suspected helium dwarf nova system KL Draconis in a high state. The presence of superhumps combined with the previously observed helium spectrum and large-amplitude photometric variations confirm that KL Dra is an AM CVn system similar to CR Bootis, V803 Cen and CP Eridani. We also find a low-state photometric period at 25.0 min that we suggest may be the orbital period. With this assumption, we estimate   q =0.075  ,   M 1=0.76 M  and   M 2=0.057 M  .  相似文献   

9.
We present an analysis of X-ray and ultraviolet (UV) data of the dwarf nova VW Hyi that were obtained with XMM–Newton during the quiescent state. The X-ray spectrum indicates the presence of an optically thin plasma in the boundary layer that cools as it settles on to the white dwarf. The plasma has a continuous temperature distribution that is well described by a power law or a cooling flow model with a maximum temperature of 6–8 keV. We estimate from the X-ray spectrum a boundary layer luminosity of  8 × 1030 erg s-1  , which is only 20 per cent of the disc luminosity. The rate of accretion on to the white dwarf is  5 × 10−12 M yr−1  , about half of the rate in the disc. From the high-resolution X-ray spectra, we estimate that the X-ray emitting part of the boundary layer is rotating with a velocity of 540 km s−1, which is close to the rotation velocity of the white dwarf but is significantly smaller than the Keplerian velocity. We detect a 60-s quasi-periodic oscillation of the X-ray flux, which is likely to be due to the rotation of the boundary layer. The X-ray and the UV flux show strong variability on a time-scale of ∼1500 s. We find that the variability in the two bands is correlated and that the X-ray fluctuations are delayed by ∼100 s. The correlation indicates that the variable UV flux is emitted near the transition region between the disc and the boundary layer and that accretion rate fluctuations in this region are propagated to the X-ray emitting part of the boundary layer within ∼100 s. An orbital modulation of the X-ray flux suggests that the inner accretion disc is tilted with respect to the orbital plane. The elemental abundances in the boundary layer are close to their solar values.  相似文献   

10.
11.
Archival data on permanent superhump systems are compiled to test the thermal stability of their accretion discs. We find that their discs are almost certainly thermally stable as expected. This result confirms Osaki's suggestion that permanent superhump systems form a new subclass of cataclysmic variables (CVs), with relatively short orbital periods and high mass-transfer rates. We note that if the high accretion rates estimated in permanent superhump systems represent their mean secular values, then their mass-transfer rates cannot be explained by gravitational radiation, therefore, either magnetic braking should be extrapolated to systems below the period gap or they must have mass-transfer cycles. Alternatively, a new mechanism that removes angular momentum from CVs below the gap should be invoked.
We suggest applying the nova cycle scenarios offered for systems above the period gap to the short orbital period CVs. Permanent superhumps have been observed in the two non-magnetic ex-novae with binary periods below the gap. Their post-nova magnitudes are brighter than their pre-outburst values. In one case (V1974 Cyg) it has been demonstrated that the pre-nova should have been a regular SU UMa system. Thus, it is the first nova whose accretion disc was observed to change its thermal stability. If the superhumps in this system indicate persistent high mass-transfer rates rather than a temporary change induced by irradiation from the hot post-nova white dwarf, it is the first direct evidence for mass-transfer cycles in CVs. The proposed cycles are driven by the nova eruption.  相似文献   

12.
13.
The classical nova V4743 Sgr was observed with XMM–Newton for about 10 h on 2003 April 4, 6.5 months after optical maximum. At this time, this nova had become the brightest supersoft X-ray source ever observed. In this paper, we present the results of a time-series analysis performed on the X-ray light curve (LC) obtained in this observation, and in a previous shorter observation done with Chandra 16 d earlier. Intense variability, with amplitude as large as 40 per cent of the total flux, was observed both times. Similarities can be found between the two observations in the structure of the variations. Most of the variability is well represented as a combination of oscillations at a set of discrete frequencies lower than 1.7 mHz. At least five frequencies are constant over the 16 d time interval between the two observations. We suggest that a period in the power spectrum of both LCs at the frequency of 0.75 mHz and its first harmonic are related to the spin period of the white dwarf (WD) in the system, and that other observed frequencies are signatures of non-radial WD pulsations. A possible signal with a 24 000 s period is also found in the XMM–Newton LC: a cycle and a half are clearly identified. This period is consistent with the 24 278 s periodicity discovered in the optical LC of the source and thought to be the orbital period of the nova binary stellar system.  相似文献   

14.
The 2006 outburst of GK Persei differed significantly at optical and ultraviolet (UV) wavelengths from typical outbursts of this object. We present multiwavelength (X-ray, UV and optical) Swift and AAVSO data, giving unprecedented broad-band coverage of the outburst, allowing us to follow the evolution of the longer-than-normal 2006 outburst across these wavelengths. In the optical and UV we see a triple-peaked morphology with maximum brightness ∼1.5 mag lower than in previous years. In contrast, the peak hard X-ray flux is the same as in previous outbursts. We resolve this dichotomy by demonstrating that the hard X-ray flux only accounts for a small fraction of the total energy liberated during accretion, and interpret the optical/UV outburst profile as arising from a series of heating and cooling waves traversing the disc, caused by its variable density profile.  相似文献   

15.
16.
Low-resolution spectra, taken at La Silla (ESO), identify the old nova RS Car (1895) as a ∼18 mag star located 7 arcsec southwest from the previous published position. This suggests a much brighter absolute magnitude of the old nova, M v ∼5.4, than previously suspected. The spectrum reveals a continuum energy distribution typical of optically thick accretion discs and quite a high excitation state of the gas. The possible detection of the AlO λ 4843 emission band is discussed.  相似文献   

17.
We present a phase-resolved ROSAT HRI X-ray light curve of the dwarf nova OY Car in quiescence. The X-ray flux is eclipsed at the same time as the optical eclipse of the primary, and the region of X-ray emission is comparable in size to the white dwarf. We use subsequent optical observations to update the orbital ephemeris of the system.  相似文献   

18.
19.
We have detected coherent oscillations ('dwarf nova oscillations') in Hubble Space Telescope spectra of the dwarf nova OY Car. The oscillations were seen towards the end of a superoutburst of OY Car. The oscillations are extraordinary compared with the many other examples in the literature for two reasons. First, their amplitude is large, with a peak-to-peak variation of 8 to 20 per cent of the total flux over the range 1100 to 2500 Å. However, most remarkably we find that there are two components present simultaneously. Both have periods close to 18 s (equivalent to 4800 cycle d−1) but they are separated by 57.7 ± 0.5 cycle d−1. The lower frequency component of the pair has a strong second harmonic while its companion, which has about twice its amplitude, does not. The oscillation spectra appear hotter than the mean spectrum and approximately follow the continuum distribution of a blackbody with a temperature in the range 30 000 to 50 000 K. We tentatively suggest that the weaker non-sinusoidal component could represent the rotation of the white dwarf, although we have been unable to recover any such signal in quiescent data.  相似文献   

20.
We present a small sample of time-resolved optical spectroscopy of the dwarf nova HL CMa during an outburst state. By combining radial velocity measurements with published data we show that the previously quoted value is not the only candidate for the orbital period of this system. We reduce the significance of daily aliasing but cannot distinguish between two periods at 0.2146±0.0004 and 0.2212±0.0005 d. We show that the low-excitation emission lines are composites from an accretion disc and the companion star, and that high-excitation emission originates in the disc or outflowing material associated with the accreting white dwarf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号