首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of the activity of Comet C/1995 O1 (Hale-Bopp) with a thermophysical nucleus model that does not rely on the existence of amorphous ice is presented. Our approach incorporates recent observations allowing to constrain important parameters that control cometary activity. The model accounts for heat conduction, heat advection, gas diffusion, sublimation, and condensation in a porous ice-dust matrix with moving boundaries. Erosion due to surface sublimation of water ice leads to a moving boundary. The movement of the boundary is modeled by applying a temperature remapping technique which allows us to account for the loss in the internal energy of the eroded surface material. These kind of problems are commonly referred to as Stefan problems. The model takes into account the diurnal rotation of the nucleus and seasonal effects due to the strong obliquity of Hale-Bopp as reported by Jorda et al. (Jorda, L., Rembor, K., Lecacheux, J., Colom, P., Colas, F., Frappa, E., Lara, L.M. [1997]. Earth Moon Planets 77, 167-180). Only bulk sublimation of water and CO ice are considered without further assumptions such as amorphous ices with certain amount of occluded CO gas. Confined and localized activity patterns are investigated following the reports of Lederer and Campins (Lederer, S.M., Campins, H. [2002]. Earth Moon Planets 90, 381-389) about the chemical heterogeneity of Hale-Bopp and of Bockelée-Morvan et al. (Bockelée-Morvan, D., Henry, F., Biver, N., Boissier, J., Colom, P., Crovisier, J., Despois, D., Moreno, R., Wink, J. [2009]. Astron. Astrophys. 505, 825-843) about a strong CO source at a latitude of 20°. The best fit to the observations of Biver et al. (Biver, N. et al. [2002]. Earth Moon Planets 90, 5-14) is obtained with a low thermal conductivity of 0.01 W m−1 K−1. This is in agreement with recent results of the Deep Impact mission to 9P/Tempel 1 (Groussin, O., A’Hearn, M.F., Li, J.-Y., Thomas, P.C., Sunshine, J.M., Lisse, C.M., Meech, K.J., Farnham, T.L., Feaga, L.M., Delamere, W.A. [2007]. Icarus 187, 16-25) and with previous thermal simulations (Kührt, E. [1999]. Space Sci. Rev. 90, 75-82). The water production curve matches the production rates well from −4 AU pre-perihelion to the outgoing leg while the model does not reproduce so well the water production beyond 4 AU pre-perihelion. The CO production curve is a good fit to the measurements of Biver et al. (2002) over the whole measured heliocentric range from −7 AU pre- to 15 AU post-perihelion.  相似文献   

2.
Rei Niimi  Toshihiko Kadono 《Icarus》2011,211(2):986-992
A large number of cometary dust particles were captured with low-density silica aerogels by NASA’s Stardust Mission. Knowledge of the details of the capture mechanism of hypervelocity particles in silica aerogel is needed in order to correctly derive the original particle features from impact tracks. However, the mechanism has not been fully understood yet. We shot hard spherical projectiles of several different materials into silica aerogel of density 60 mg cm−3 and observed their penetration processes using an image converter or a high-speed video camera. In order to observe the deceleration of projectiles clearly, we carried out impact experiments at two velocity ranges; ∼4 km s−1 and ∼200 m s−1. From the movies we took, it was indicated that the projectiles were decelerated by hydrodynamic force which was proportional to v2 (v: projectile velocity) during the faster penetration process (∼4 km s−1) and they were merely overcoming the aerogel crushing strength during the slower penetration process (∼200 m s−1). We applied these deceleration mechanisms for whole capture process to calculate the track length. Our model well explains the track length in the experimental data set by Burchell et al. (Burchell, M.J., Creighton, J.A., Cole, M.J., Mann, J., Kearsley, A.T. [2001]. Meteorit. Planet. Sci. 36, 209-221).  相似文献   

3.
The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat flux from a recently presented new hypothesis for the formation of Aram Chaos (Zegers, T.E., Oosthoek, J.H.P., Rossi, A.P., Blom, J.K., Schumacher, S. [2010]. Earth Planet. Sci. Lett. 297, 496-504. doi:10.1016/j.epsl.2010.06.049.). In this hypothesis the chaotic terrain is thought to have formed by melting of a buried ice sheet. The slow sedimentation and burial of the ice sheet led to an increased thermal insulation of the ice and subsequently to a temperature increase high enough to trigger melting and the formation of the subsurface lake. As these processes highly depend on the thermal properties of the subsurface and especially on the surface heat flux, it is possible to constrain the latter by using numerical simulations. Based on the hypothesis for the formation of Aram Chaos, we conducted an extensive parameter study to determine the parameter settings leading to sufficient melting of the buried ice sheet. We find that the surface heat flux in the Aram Chaos region during the Hesperian was most likely between 20 and 45 mW m−2 with a possible maximum value of up to 60 mW m−2.  相似文献   

4.
We investigate impact basin relaxation on Iapetus by combining a 3D thermal evolution model (Robuchon, G., Choblet, G., Tobie, G., Cadek, O., Sotin, C., Grasset, O. [2010]. Icarus 207, 959-971) with a spherical axisymmetric viscoelastic relaxation code (Zhong, S., Paulson, A., Wahr, J. [2003]. Geophys. J. Int. 155, 679-695). Due to the progressive cooling of Iapetus, younger basins relax less than older basins. For an ice reference viscosity of 1014 Pa s, an 800 km diameter basin relaxes by 30% if it formed in the first 50 Myr but by 10% if it formed at 1.2 Gyr. Bigger basins relax more rapidly than smaller ones, because the inferred thickness of the ice shell exceeds the diameter of all but the largest basins considered. Stereo topography shows that all basins 600 km in diameter or smaller are relaxed by 25% or less. Our model can match the relaxation of all the basins considered, within error, by assuming a single basin formation age (4.36 Ga for our nominal viscosity). This result is consistent with crater counts, which show no detectable age variation between the basins examined.  相似文献   

5.
The reflectance of Saturn’s moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini’s Ultraviolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus’ reflectance spectrum is very bright, consistent with a surface composed primarily of H2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. Previous analyses have focused on the VNIR spectrum, comparing it to pure water ice (Cruikshank, D.P., Owen, T.C., Dalle Ore, C., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P. [2005] Icarus, 175, 268-283) or pure water ice plus a small amount of NH3 (Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., Dalton, J.B. [2005] Astron. Astrophys., 435, 353-362) or NH3 hydrate (Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., Wilson, J.C. [2006] Icarus, 182, 211-223). We compare Enceladus’ FUV spectrum to existing laboratory measurements of the reflectance spectra of candidate species, and to spectral models. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH3 and a small amount of a tholin in addition to H2O ice on the surface. The presence of these three species (H2O, NH3, and a tholin) appears to satisfy not only the low FUV reflectance and spectral shape, but also the middle-ultraviolet to visible wavelength brightness and spectral shape. We expect that ammonia in the Enceladus plume is transported across the surface to provide a global coating.  相似文献   

6.
A. Bar-Nun  G. Notesco 《Icarus》2007,190(2):655-659
Recent attempts using high resolution spectra to detect N+2 in several comets were unsuccessful [Cochran, A.L., Cochran, W.D., Baker, E.S., 2000. Icarus 146, 583-593; Cochran, A.L., 2002. Astrophys. J. 576, L165-L168]. The upper limits on N+2 in comparison with the positively detected CO+ for Comets C/1995 O1 Hale-Bopp, 122P/1995 S1 de Vico and 153P/2002 C1 Ikeya-Zhang range between . Ar was not detected in three recent comets [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98], with upper limits of Ar/CO<(3.4-7.8)×10−2 for Comets C/1999 T1 McNaught-Hartley, C/2001 A2 LINEAR and C/2000 WM1 LINEAR. The Ar detected by Stern et al. [Stern, S.A., Slater, D.C., Festou, M.C., Parker, J.Wm., Gladstone, G.R., A'Hearn, M.F., Wilkinson, E., 2000. Astrophys. J. 544, L169-L172] for Comet C/1995 O1 Hale-Bopp, gives a ratio Ar/CO=7.25×10−2, which was not confirmed by Cosmovici et al. [Cosmovici, C.B., Bratina, V., Schwarz, G., Tozzi, G., Mumma, M.J., Stalio, R., 2006. Astrophys. Space Sci. 301, 135-143]. Trying to solve the two problems, we studied experimentally the trapping of N2+CO+Ar in amorphous water ice, at 24-30 K. CO was found to be trapped in the ice 20-70 times more efficiently than N2 and with the same efficiency as Ar. The resulting Ar/CO ratio of 1.2×10−2 is consistent with Weaver et al.'s [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98] non-detection of Ar. However, with an extreme starting value for N2/CO = 0.22 in the region where the ice grains which agglomerated to produce comet nuclei were formed, the expected N2/CO ratio in the cometary ice should be 6.6×10−3, much higher than its non-detection limit.  相似文献   

7.
E.M.A. Chen  F. Nimmo 《Icarus》2011,214(2):779-781
Recently, Tyler [Tyler, R.H., 2009. Geophys. Res. Lett. 36, L15205; Tyler, R., 2011. Icarus, 211, 770-779] proposed that the tide due to an obliquity of greater than 0.1° might drive resonant flow in a liquid ocean at Enceladus, and that dissipation of the ocean’s kinetic energy may be an alternate source for the observed global heat flux. While there is currently no measurement of Enceladus’ obliquity, dissipation is expected to drive the spin pole to a Cassini state. Under this assumption, we find that Enceladus should occupy Cassini state 1 and that the obliquity of Enceladus should be less than 0.0015° for values of the degree-2 gravity coefficient C2,2 between 1.0 × 10−3 and 2.5 × 10−3. Unless there is a significant free obliquity or the gravity coefficient C2,2 has been significantly overestimated, it is unlikely that obliquity-driven flow in a subsurface ocean is the source of the extreme heat on Enceladus.  相似文献   

8.
Monte Carlo simulations are used to model the July 14, 2005 UVIS stellar occultation observations of the water vapor plumes on Enceladus. These simulations indicate that the observations can be best fit if the water molecules ejected along the Tiger Stripes in the South Polar region of Enceladus have a vertical surface velocity of 300-500 m/s at the surface. The high surface velocity suggests that the plumes on Enceladus originate from some depth beneath the surface. The total escape rate of water molecules is 4-6×1027 s−1, or 120-180 kg/s, consistent with previous works, and more than 100 times the estimated mass escape rate for ice particles. The average deposition rate in the South Polar region is on the order of 1011 cm−2 s−1, yielding a resurfacing rate as high as 3×10−4 cm/yr. The globally averaged deposition rate of water molecules is about one order of magnitude lower.  相似文献   

9.
Numerical simulations, based on the core-nucleated accretion model, are presented for the formation of Jupiter at 5.2 AU in three primordial disks with three different assumed values of the surface density of solid particles. The grain opacities in the envelope of the protoplanet are computed using a detailed model that includes settling and coagulation of grains and that incorporates a recalculation of the grain size distribution at each point in time and space. We generally find lower opacities than the 2% of interstellar values used in previous calculations (Hubickyj, O., Bodenheimer, P., Lissauer, J.J. [2005]. Icarus 179, 415-431; Lissauer, J.J., Hubickyj, O., D’Angelo, G., Bodenheimer, P. [2009]. Icarus 199, 338-350). These lower opacities result in more rapid heat loss from and more rapid contraction of the protoplanetary envelope. For a given surface density of solids, the new calculations result in a substantial speedup in formation time as compared with those previous calculations. Formation times are calculated to be 1.0, 1.9, and 4.0 Myr, and solid core masses are found to be 16.8, 8.9, and 4.7 M, for solid surface densities, σ, of 10, 6, and 4 g cm−2, respectively. For σ = 10 and σ = 6 g cm−2, respectively, these formation times are reduced by more than 50% and more than 80% compared with those in a previously published calculation with the old approximation to the opacity.  相似文献   

10.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   

11.
Ke Zhang  Francis Nimmo 《Icarus》2009,204(2):597-609
We study the orbital behavior of Saturn’s satellites Enceladus and Dione during their passage through the 2:1 mean-motion resonances to constrain their interior structures, parameterized by the quantity k2/Q (assumed constant). Enceladus’ evolution after escape from the second-order e-Enceladus e-Dione resonance requires that (k2/Q)Enceladus<8×10-4, for that QSaturn>18,000. This result is in agreement with [Meyer, J., Wisdom, J., 2008b. Icarus 193, 213-223]. The present-day libration amplitude of Enceladus requires that (k2/Q)Enceladus>1.2×10-4, assuming that QSaturn<105. Dione’s present-day eccentricity indicates that (k2/Q)Dione?3×10-4 for QSaturn>18,000. Assuming Maxwellian viscoelastic behavior, we find that for Enceladus a convective ice shell overlying an ocean is too dissipative to match the orbital constraints. We conclude that a conductive shell overlying an ocean is more likely, and discuss the implications of this result. Dione’s ice shell is also likely to be conductive, but our results are less constraining.  相似文献   

12.
John E. Moores  Peter H. Smith 《Icarus》2011,211(2):1129-1149
A chamber was constructed to simulate the boundary between the ice table, regolith and atmosphere of Mars and to examine fractionation between H2O and HDO during sublimation under realistic martian conditions of temperature and pressure. Thirteen experimental runs were conducted with regolith overlying the ice. The thickness and characteristic grain size of the regolith layer as well as the temperature of the underlying ice was varied. From these runs, values for the effective diffusivity, taking into account the effects of adsorption, of the regolith were derived. These effective diffusivities ranged from 1.8 × 10−4 m2 s−1 to 2.2 × 10−3 m2 s−1 for bare ice and from 2.4 × 10−11 m2 s−1 to 2.0 × 10−9 m2 s−1 with an adsorptive layer present. From these, latent heats of adsorption of 8.6 ± 2.6 kJ mol−1 and 9.3 ± 2.8 kJ mol−1 were derived at ice-surface temperatures above 223 ± 8 K and 96 ± 28 kJ mol−1 and 104 ± 31 kJ mol−1 respectively for H2O and HDO were derived at colder temperatures. For temperatures below 223 K, the effective diffusivity of HDO was found to be lower than the diffusivity of H2O by 40% on average, suggesting that the regolith was adsorptively fractionating the sublimating gas with a fractionation factor of 1.96 ± 0.74. Applying these values to Mars predicts that adsorbed water on the regolith is enriched in HDO compared to the atmosphere, particularly where the regolith is colder. Based on current observations, the D/H ratio of the regolith may be as high as 21 ± 8 times VSMOW at 12°S and LS = 357° if the regolith is hydrated primarily by the atmosphere, neglecting any hydration from subsurface ice.  相似文献   

13.
Lijie Han  Adam P. Showman 《Icarus》2011,212(1):262-267
We present self-consistent, fully coupled two-dimensional (2D) numerical models of thermal evolution and tidal heating to investigate how convection interacts with tidal dissipation under the influence of non-Newtonian grain-size-sensitive creep rheology (plausibly resulting from grain boundary sliding) in Europa’s ice shell. To determine the thermal evolution, we solved the convection equations (using finite-element code ConMan) with the tidal dissipation as a heat source. For a given heterogeneous temperature field at a given time, we determined the tidal dissipation rate throughout the ice shell by solving for the tidal stresses and strains subject to Maxwell viscoelastic rheology (using finite-element code Tekton). In this way, the convection and tidal heating are fully coupled and evolve together. Our simulations show that the tidal dissipation rate can have a strong impact on the onset of thermal convection in Europa’s ice shell under non-Newtonian GSS rheology. By varying the ice grain size (1-10 mm), ice-shell thickness (20-120 km), and tidal-strain amplitude (0-4 × 10−5), we study the interrelationship of convection and conduction regimes in Europa’s ice shell. Under non-Newtonian grain-size-sensitive creep rheology and ice grain size larger than 1 mm, no thermal convection can initiate in Europa’s ice shell (for thicknesses <100 km) without tidal dissipation. However, thermal convection can start in thinner ice shells under the influence of tidal dissipation. The required tidal-strain amplitude for convection to occur decreases as the ice-shell thickness increases. For grain sizes of 1-10 mm, convection can occur in ice shells as thin as 20-40 km with the estimated tidal-strain amplitude of 2 × 10−5 on Europa.  相似文献   

14.
Cassini-Huygens observations have shown that Titan and Enceladus are geologically active icy satellites. Mitri and Showman [Mitri, G., Showman, A.P., 2005. Icarus 177, 447-460] and McKinnon [McKinnon, W.B., 2006. Icarus 183, 435-450] investigated the dynamics of an ice shell overlying a pure liquid-water ocean and showed that transitions from a conductive state to a convective state have major implications for the surface tectonics. We extend this analysis to the case of ice shells overlying ammonia-water oceans. We explore the thermal state of Titan and Enceladus ice-I shells, and also we investigate the consequences of the ice-I shell conductive-convective switch for the geology. We show that thermal convection can occur, under a range of conditions, in the ice-I shells of Titan and Enceladus. Because the Rayleigh number Ra scales with δ3/ηb, where δ is the thickness of the ice shell and ηb is the viscosity at the base of the ice-I shell, and because ammonia in the liquid layer (if any) strongly depresses the melting temperature of the water ice, Ra equals its critical value for two ice-I shell thicknesses: for relatively thin ice shell with warm, low-viscosity base (Onset I) and for thick ice shell with cold, high-viscosity base (Onset II). At Onset I, for a range of heat fluxes, two equilibrium states—corresponding to a thin, conductive shell and a thick, convective shell—exist for a given heat flux. Switches between these states can cause large, rapid changes in the ice-shell thickness. For Enceladus, we demonstrate that an Onset I transition can produce tectonic stress of ∼500 bars and fractures of several tens of km depth. At Onset II, in contrast, we demonstrate that zero equilibrium states exist for a range of heat fluxes. For a mean heat flux within this range, the satellite experiences oscillations in surface heat flux and satellite volume with periods of ∼50-800 Myr even when the interior heat production is constant or monotonically declining in time; these oscillations in the thermal state of the ice-I shell would cause repeated episodes of extensional and compressional tectonism.  相似文献   

15.
To investigate the evolution of any processes on planetary surfaces in the outer Solar System, the rheological properties of non-water ices were studied by means of a sound velocity measurement system and a uniaxial deformation apparatus. A pulse transmission method was used to obtain longitudinal (Vp) and transverse (Vs) wave velocities through solid nitrogen and methane at temperatures ranging from 5 to 64 K and from 5 to 90 K, respectively. The measured velocities confirmed that the solid methane and solid nitrogen samples were non-porous polycrystalline samples without any cracks and bubbles inside. Compression tests at constant strain-rate were performed for solid nitrogen and methane at temperatures of 5-56 K and 5-77 K, respectively, at strain-rates of 10−4-10−2 s−1. Both brittle and ductile behavior was observed for solid nitrogen and methane under these conditions. The maximum strength of solid nitrogen was observed to be 9 MPa in the brittle failure mode, and that of solid methane was 10 MPa. These low strengths cannot support cantaloupe structures with the topographic undulation larger than several kilometers found on Triton’s surface, suggesting that other materials such as H2O ice could underlay solid methane and nitrogen and support these structures.  相似文献   

16.
The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-saturnian solar nebula are so long that core growth can take >15 Myr and (2) the onset of runaway gas accretion that begins when cores reach ∼10M necessitates a sudden gas accretion cutoff just as Uranus and Neptune’s cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) using the initial semimajor axis distribution of the Nice model (Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5.3-6 Myr, a considerable time decrease from previous one-dimensional simulations (e.g. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y. [1996]. Icarus 124, 62-85). The core masses stay subcritical, eliminating the need for a sudden gas accretion cutoff.Our calculated carbon mass fractions of 22% are in excellent agreement with the ice giant interior models of Podolak et al. (Podolak, M., Weizman, A., Marley, M. [1995]. Planet. Space Sci. 43, 1517-1522) and Marley et al. (Marley, M.S., Gómez, P., Podolak, M. [1995]. J. Geophys. Res. 100, 23349-23354). Based on the requirement that the ice giant-forming planetesimals contain >10% mass fractions of methane ice, we can reject any Solar System formation model that initially places Uranus and Neptune inside of Saturn’s orbit. We also demonstrate that a large population of planetesimals must be present in both ice giant feeding zones throughout the lifetime of the gaseous nebula. This research marks a substantial step forward in connecting both the dynamical and chemical aspects of planet formation. Although we cannot say that the solid-rich solar nebula model of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) gives exactly the appropriate initial conditions for planet formation, rigorous chemical and dynamical tests have at least revealed it to be a viable model of the early Solar System.  相似文献   

17.
Our model [Dimitrov, V., Bar-Nun, A., 1999. A model of energy dependent agglomeration of hydrocarbon aerosol particles and implication to Titan's aerosol. J. Aerosol. Sci. 30(1), 35-49] describes the experimentally found polymerization of C2H2 and HCN to form aerosol embryos, their growth and adherence to form various aerosols objects [Bar-Nun, A., Kleinfeld, I., Ganor, E., 1988. Shape and optical properties of aerosols formed by photolysis of C2H2, C2H4 and HCN. J. Geophys. Res. 93, 8383-8387]. These loose fractal objects describe well the findings of DISR on the Huygens probe [Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E., 2008. Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan's atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007]. These include (1) various regular objects of R=(0.035-0.064)×10−6 m, as compared with DISR's 0.05×10−6 m; (2) diverse low and high fractal structures composed of random combinations of various regular and irregular objects; (3) the number density of fractal particles is 6.9×106 m−3 at Z=100 km, as compared with DISR's finding of 5.0×106 m−3 at Z=80 km; (4) the number of structural units per higher fractals in the atmosphere at Z∼100 km is (2400-2700), as compared with DISR's 3000, and their size being of R=(5.4-6.4)×10−6 m will satisfy this value and (5) condensation of CH4 on the highly fractal structures could begin at the altitude where thin methane clouds were observed, filling somewhat the new open fractal structures.  相似文献   

18.
Aspects of two qualitative models of Enceladus’ dust plume—the so-called “Cold Faithful” [Porco, C.C., et al., 2006. Cassini observes the active south pole of Enceladus. Science 311, 1393-1401; Ingersoll, A.P., et al., 2006. Models of the Enceladus plumes. In: Bulletin of the American Astronomical Society, vol. 38, p. 508] and “Frigid Faithful” [Kieffer, S.W., et al., 2006. A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314, 1764; Gioia, G., et al., 2007. Unified model of tectonics and heat transport in a Frigid Enceladus. Proc. Natl. Acad. Sci. 104, 13578-13591] models—are analyzed quantitatively. The former model assumes an explosive boiling of subsurface liquid water, when pressure exerted by the ice crust is suddenly released due to an opening crack. In the latter model the existence of a deep shell of clathrates below Enceladus’ south pole is conjectured; clathrates can decompose explosively when exposed to vacuum through a fracture in the outer icy shell. For the Cold Faithful model we estimate the maximal velocity of ice grains, originating from water splashing in explosive boiling. We find that for water near the triple point this velocity is far too small to explain the observed plume properties. For the Frigid Faithful model we consider the problem of momentum transfer from gas to ice particles. It arises since any change in the direction of the gas flow in the cracks of the shell requires re-acceleration of the entrained grains. While this effect may explain the observed speed difference of gas and grains if the gas evaporates from triple point temperature (273.15 K) [Schmidt, J., et al., 2008. Formation of Enceladus dust plume. Nature 451, 685], the low temperatures of the Frigid Faithful model imply a too dilute vapor to support the observed high particle fluxes in Enceladus’ plume.  相似文献   

19.
We vapor deposit at 20 K a mixture of gases with the specific Enceladus plume composition measured in situ by the Cassini INMS [Waite, J.H., Combi, M.R., Ip, W.H., Cravens, T.E., McNutt, R.L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., Tseng, W.L., 2006. Science 311, 1419-1422] to form a mixed molecular ice. As the sample is slowly warmed, we monitor the escaping gas quantity and composition with a mass spectrometer. Pioneering studies [Schmitt, B., Klinger, J., 1987. Different trapping mechanisms of gases by water ice and their relevance for comet nuclei. In: Rolfe, E.J., Battrick, B. (Eds.), Diversity and Similarity of Comets. SP-278. ESA, Noordwijk, The Netherlands, pp. 613-619; Bar-Nun, A., Kleinfeld, I., Kochavi, E., 1988. Phys. Rev. B 38, 7749-7754; Bar-Nun, A., Kleinfeld, I., 1989. Icarus 80, 243-253] have shown that significant quantities of volatile gases can be trapped in a water ice matrix well above the temperature at which the pure volatile ice would sublime. For our Enceladus ice mixture, a composition of escaping gases similar to that detected by Cassini in the Enceladus plume can be generated by the sublimation of the H2O:CO2:CH4:N2 mixture at temperatures between 135 and 155 K, comparable to the high temperatures inferred from the CIRS measurements [Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C., 2006. Science 311, 1401-1405] of the Enceladus “tiger stripes.” This suggests that the gas escape phenomena that we measure in our experiments are an important process contributing to the gases emitted from Enceladus. A similar experiment for ice deposited at 70 K shows that both the processes of volatile trapping and release are temperature dependent over the temperature range relevant to Enceladus.  相似文献   

20.
The Alice ultraviolet spectrograph onboard the New Horizons spacecraft observed two occultations of the bright star χ Ophiucus by Jupiter’s atmosphere on February 22 and 23, 2007 during the approach phase of the Jupiter flyby. The ingress occultation probed the atmosphere at 32°N latitude near the dawn terminator, while egress probed 18°N latitude near the dusk terminator. A detailed analysis of both the ingress and egress occultations, including the effects of molecular hydrogen, methane, acetylene, ethylene, and ethane absorptions in the far ultraviolet (FUV), constrains the eddy diffusion coefficient at the homopause level to be  cm2 s−1, consistent with Voyager measurements and other analyses (Festou, M.C., Atreya, S.K., Donahue, T.M., Sandel, B.R., Shemansky, D.E., Broadfoot, A.L. [1981]. J. Geophys. Res. 86, 5717-5725; Vervack Jr., R.J., Sandel, B.R., Gladstone, G.R., McConnell, J.C., Parkinson, C.D. [1995]. Icarus 114, 163-173; Yelle, R.V., Young, L.A., Vervack Jr., R.J., Young, R., Pfister, L., Sandel, B.R. [1996]. J. Geophys. Res. 101 (E1), 2149-2162). However, the actual derived pressure level of the methane homopause for both occultations differs from that derived by [Festou et al., 1981] and [Yelle et al., 1996] from the Voyager ultraviolet occultations, suggesting possible changes in the strength of atmospheric mixing with time. We find that at 32°N latitude, the methane concentration is  cm−3 at 70,397 km, the methane concentration is  cm−3 at 70,383 km, the acetylene concentration is  cm−3 at 70,364 km, and the ethane concentration is  cm−3 at 70,360 km. At 18°N latitude, the methane concentration is  cm−3 at 71,345 km, the methane concentration is  cm−3 at 71,332 km, the acetylene concentration is cm−3 at 71,318 km, and the ethane concentration is  cm−3 at 71,315 km. We also find that the H2 occultation light curve is best reproduced if the atmosphere remains cold in the microbar region such that the base of the thermosphere is located at a lower pressure level than that determined by in situ instruments aboard the Galileo probe (Seiff, A., Kirk, D.B., Knight, T.C.D., Young, R.E., Mihalov, J.D., Young, L.A., Milos, F.S., Schubert, G., Blanchard, R.C., Atkinson, D. [1998]. J. Geophys. Res. 103 (E10), 22857-22889) - the Sieff et al. temperature profile leads to too much absorption from H2 at high altitudes. However, this result is highly model dependent and non-unique. The observations and analysis help constrain photochemical models of Jupiter’s atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号