首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this paper we analyze the distribution of magnetic strength ratios (MSR) across the solar disk using magnetograms in different spectral lines from the same observatory (Mount Wilson Observatory (MWO) and Sayan Observatory (SO)), magnetograms in the same line from different observatories (MWO, SO, Wilcox Solar Observatory (WSO)), and in different spectral lines from different observatories (the three observatories mentioned above, the National Solar Observatory/Kitt Peak (KP) and Michelson Doppler Imager (MDI) on board Solar and Heliospheric Observatory (SoHO)). We find peculiarities in some combinations of data sets. Besides the expected MSR center-to-limb variations, there is an equator-to-pole asymmetry, especially in the near-limb areas. Therefore, it is generally necessary to use 2D matrices of correction coefficients to reduce one kind of observation into another one.  相似文献   

2.
The solar cycle 23 minimum period has been characterized by a weaker solar and interplanetary magnetic field. This provides an ideal time to study how the strength of the photospheric field affects the interplanetary magnetic flux and, in particular, how much the observed interplanetary fields of different cycle minima can be understood simply from differences in the areas of the coronal holes, as opposed to differences in the surface fields within them. In this study, we invoke smaller source surface radii in the potential-field source-surface (PFSS) model to construct a consistent picture of the observed coronal holes and the near-Earth interplanetary field strength as well as polarity measurements for the cycles 23 and 22 minimum periods. Although the source surface value of 2.5 R is typically used in PFSS applications, earlier studies have shown that using smaller source surface heights generates results that better match observations during low solar activity periods. We use photospheric field synoptic maps from Mount Wilson Observatory (MWO) and find that the values of ≈ 1.9 R and ≈ 1.8 R for the cycles 22 and 23 minimum periods, respectively, produce the best results. The larger coronal holes obtained for the smaller source surface radius of cycle 23 somewhat offsets the interplanetary consequences of the lower magnetic field at their photospheric footpoints. For comparison, we also use observations from the Michelson Doppler Imager (MDI) and find that the source surface radius of ≈ 1.5 R produces better results for cycle 23, rather than ≈ 1.8 R as suggested from MWO observations. Despite this difference, our results obtained from MWO and MDI observations show a qualitative consistency regarding the origins of the interplanetary field and suggest that users of PFSS models may want to consider using these smaller values for their source surface heights as long as the solar activity is low.  相似文献   

3.
High resolution KPNO magnetograph measurements of the line-of-sight component of the photospheric magnetic field over the entire dynamic range from 0 to 4000 gauss are used as the basic data for a new analysis of the photospheric and coronal magnetic field distributions. The daily magnetograph measurements collected over a solar rotation are averaged onto a 180 × 360 synoptic grid of equal-area elements. With the assumption that there are no electric currents above the photospheric level of measurement, a unique solution is determined for the global solar magnetic field. Because the solution is in terms of an expansion in spherical harmonics to principal index n = 90, the global photospheric magnetic energy distribution can be analyzed in terms of contributions of different scale-size and geometric pattern. This latter procedure is of value (1) in guiding solar dynamo theories, (2) in monitoring the persistence of the photospheric field pattern and its components, (3) in comparing synoptic magnetic data of different observatories, and (4) in estimating data quality. Different types of maps for the coronal magnetic field are constructed (1) to show the strong field at different resolutions, (2) to trace the field lines which open into interplanetary space and to locate their photospheric origins, and (3) to map in detail coronal regions above (specified) limited photospheric areas.The National Center for Atmospheric Research is sponsored by the National Science foundation.Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc. Under contract with the National Science Foundation.  相似文献   

4.
We describe a new method to derive the interplanetary magnetic field (IMF) out to 1 AU from photospheric magnetic field measurements. The method uses photospheric magnetograms to calculate a source surface magnetic field at 15R. Specifically, we use Wilcox Solar Observatory (WSO) magnetograms as input for the Stanford Current-Sheet Source-Surface (CSSS) model. Beyond the source surface the magnetic field is convected along velocity flow lines derived by a tomographic technique developed at UCSD and applied to interplanetary scintillation (IPS) observations. We compare the results with in situ data smoothed by an 18-h running mean. Radial and tangential magnetic field amplitudes fit well for the 20 Carrington rotations studied, which are largely from the active phase of the solar cycle. We show exemplary results for Carrington rotation 1965, which includes the Bastille Day event.  相似文献   

5.
Henney  Carl J.  Harvey  John W. 《Solar physics》2002,207(2):199-218
Over 24 years of synoptic data from the NSO Kitt Peak Vacuum Telescope is used to investigate the coherency and source of the 27-day (synodic) periodicity that is observed over multiple solar cycles in various solar-related time series. A strong 27.03-day period signal, recently reported by Neugebauer et al. (2000), is clearly detected in power spectra of time series from integrated full-disk measurements of the magnetic flux in the 868.8 nm Fei line and the line equivalent width in the 1083.0 nm Hei line. Using spectral analysis of synoptic maps of photospheric magnetic fields, in addition to constructing maps of the surface distribution of activity, we find that the origin of the 27.03-day signal is long-lived complexes of active regions in the northern hemisphere at a latitude of approximately 18 deg. In addition, using a new time series analysis technique which utilizes the phase variance of a signal, the coherency of the 27.03-day period signal is found to be significant for the past two decades. However, using the past 120 years of the sunspot number time series, the 27.03-day period signal is found to be a short-lived, no longer than two 11-year solar cycles, quasi-stationary signal.  相似文献   

6.
Solar filaments show the position of large-scale polarity-inversion lines and are used for the reconstruction of large-scale solar magnetic field structure on the basis of Hα synoptic charts for the periods that magnetographic measurements are not available. Sometimes crossing filaments are seen in Hα filtergrams. We analyze daily Hα filtergrams from the archive of Big Bear Solar Observatory for the period of 1999 – 2003 to find crossing and interacting filaments. A number of examples are presented and filament patterns are compared with photospheric magnetic field distributions. We have found that all crossing filaments reveal quadrupolar magnetic configurations of the photospheric field and presume the presence of null points in the corona.  相似文献   

7.
Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of solar cycle 21.Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field - Source Surface model. This provides a three - dimensional picture of the heliospheric field evolution during the solar cycle.In this note we announce the publication of UAG Report No. 94, an Atlas containing the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structures of the solar and heliospheric fields, which determine the environment for solar-terrestrial relations and provide the context within which solar activity related events occur, can be approximated from these data.  相似文献   

8.
The investigation of the dynamics of magnetic fields from small scales to the large scales is very important for the understanding of the nature of solar activity. It is also the base for producing adequate models of the solar cycle with the purpose to predict the level of solar activity. Since December 1995 the Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO) provides full disk magnetograms and synoptic maps which cover the period of solar cycle 23 and the current minimum. In this paper, I review the following important topics with a focus on the dynamics of the solar magnetic field. The synoptic structure of the solar cycle; the birth of the solar cycle (overlapping cycles 23 and 24); the relationship of the photospheric magnetic activity and the EUV solar corona, polar magnetic fields and dynamo theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Worden  John  Harvey  John 《Solar physics》2000,195(2):247-268
We describe a procedure intended to produce accurate daily estimates of the magnetic flux distribution on the entire solar surface. Models of differential rotation, meridional flow, supergranulation, and the random emergence of background flux elements are used to regularly update unobserved or poorly observed portions of an initial traditional magnetic synoptic map that acts as a seed. Fresh observations replace model estimates when available. Application of these surface magnetic transport models gives us new insight into the distribution and evolution of magnetic flux on the Sun, especially at the poles where canopy effects, limited spatial resolution, and foreshortening result in poor measurements. We find that meridional circulation has a considerable effect on the distribution of polar magnetic fields. We present a modeled polar field distribution as well as time series of the difference between the northern and southern polar magnetic flux; this flux imbalance is related to the heliospheric current sheet tilt. We also estimate that the amount of new background magnetic flux needed to sustain the `quiet-Sun' magnetic field is about 1.1×1023 Mx d–1 (equivalent to several large active regions) at the spatial resolution and epoch of our maps. We comment on the diffusive properties of supergranules, ephemeral regions, and intranetwork flux. The maps are available on the NSO World Wide Web page.  相似文献   

10.
Benevolenskaya  Elena E. 《Solar physics》2003,216(1-2):325-341
Extreme-ultraviolet data from EIT/SOHO (1996–2002), soft X-ray data from Yohkoh (1991–2001), and magnetic field data from MDI/SOHO (1996–2002) and Kitt Peak Observatory, NSO/NOAO (1991–2002) are analyzed together in the form of synoptic maps for the investigation of solar cycle variations of the corona and their relation to the magnetic field. These results show new interesting relations between the evolution of the topological structure of the corona, coronal heating and the large-scale magnetic field. The long-lived coronal structures are related to complexes of solar activity and display quasi-periodic behavior (in the form of impulses of coronal activity) with periods of 1.0–1.5 year, in the axisymmetric distribution of EUV and X-ray fluxes during the current solar cycle 23. In particular, during the second maximum of this cycle the solar corona became somewhat hotter than it was in the period of the first maximum.  相似文献   

11.
The Solar Dynamics Observatory provides multiwavelength imagery from extreme ultraviolet (EUV) to visible light as well as magnetic-field measurements. These data enable us to study the nature of solar activity in different regions of the Sun, from the interior to the corona. For solar-cycle studies, synoptic maps provide a useful way to represent global activity and evolution by extracting a central meridian band from sequences of full-disk images over a full solar Carrington rotation (≈?27.3 days). We present the global evolution during Solar Cycle 24 from 20 May 2010 to 31 August 2013 (CR?2097?–?CR?2140), using synoptic maps constructed from full-disk, line-of-sight magnetic-field imagery and EUV imagery (171 Å, 193 Å, 211 Å, 304 Å, and 335 Å). The synoptic maps have a resolution of 0.1 degree in longitude and steps of 0.001 in sine of latitude. We studied the axisymmetric and non-axisymmetric structures of solar activity using these synoptic maps. To visualize the axisymmetric development of Cycle 24, we generated time–latitude (also called butterfly) images of the solar cycle in all of the wavelengths, by averaging each synoptic map over all longitudes, thus compressing it to a single vertical strip, and then assembling these strips in time order. From these time–latitude images we observe that during the ascending phase of Cycle 24 there is a very good relationship between the integrated magnetic flux and the EUV intensity inside the zone of sunspot activities. We observe a North–South asymmetry of the EUV intensity in high-latitudes. The North–South asymmetry of the emerging magnetic flux developed and resulted in a consequential asymmetry in the timing of the polar magnetic-field reversals.  相似文献   

12.
Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.  相似文献   

13.
Solar eruptive phenomena, like flares and coronal mass ejections (CMEs), are governed by magnetic fields. To describe the structure of these phenomena one needs information on the magnetic flux density and the electric current density vector components in three dimensions throughout the atmosphere. However, current spectro-polarimetric measurements typically limit the determination of the vector magnetic field to only the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field for global solar atmosphere using nonlinear force-free field (NLFFF) extrapolation codes implemented to a synoptic maps of photospheric vector magnetic field synthesized from the Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) as boundary condition. Using the resulting three-dimensional magnetic field, we calculate the three-dimensional electric current density and magnetic energy throughout the solar atmosphere for Carrington rotation 2124 using our global extrapolation code. We found that spatially, the low-lying, current-carrying core field demonstrates a strong concentration of free energy in the active-region core, from the photosphere to the lower corona (about 70 Mm). The free energy density appears largely co-spatial with the electric current distribution.  相似文献   

14.
We compare photospheric line-of-sight magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) instrument with observations from the 150-foot Solar Tower at Mt. Wilson Observatory (MWO), the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO), and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). We find very good agreement between VSM and the other data sources for both disk-averaged flux densities and pixel-by-pixel measurements. We show that the VSM mean flux density time series is of consistently high signal-to-noise ratio with no significant zero offsets. We discuss in detail some of the factors ?C spatial resolution, flux dependence, and position on the solar disk ?C affecting the determination of scaling between VSM and SOHO/MDI or SDO/HMI magnetograms. The VSM flux densities agree well with spatially smoothed data from MDI and HMI, although the scaling factors show a clear dependence on flux density. The factor to convert VSM to HMI increases with increasing flux density (from ??1 to ??1.5). The nonlinearity is smaller for the VSM vs. SOHO/MDI scaling factor (from ??1 to ??1.2).  相似文献   

15.
Measurements from the Mount Wilson Observatory (MWO) were used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that presented in Pevtsov et al. (Astrophys. J. Lett. 742, L36, 2011), we selected the sunspot with the strongest measured field strength for each observing week and computed monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500?–?700 gauss (G), but no statistically significant long-term trends. Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for cycles 15?–?19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500?–?700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300?–?350 G, and, following a broad maximum in 1920?–?1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scaled the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (the linear fit to the data yields a slope of ??0.2±0.8 G?year?1). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21?–?23) with a mean downward trend of ≈?15 G?year?1.  相似文献   

16.
Fainshtein  V.G.  Khotilovich  A.V.  Rudenko  G.V. 《Solar physics》2003,216(1-2):5-20
Solar Physics - In this paper we carry out a correlative analysis of the measurements of the photospheric magnetic field B d (the magnetic component along the line of sight) from NSO/KP, and of the...  相似文献   

17.
Durrant  C.J.  Mccloughan  J. 《Solar physics》2004,219(1):55-78
We describe the application of the synoptic transport equation to simulate the temporal evolution of the magnetic flux over the solar surface. This provides a means of predicting each day both the synoptic maps for the Carrington rotation starting the next day and the instantaneous map of the solar flux over the whole solar surface for the next day. The reliability of the predicted synoptic maps is tested by comparing the locations of the zero-flux contour with those of the observed maps produced by the National Solar Observatory, Kitt Peak and with the locations of Hα filaments measured on filtergrams obtained by the Big Bear Solar Observatory. We conclude that the best match at high latitudes is obtained by long-term simulations (over 20 rotations) with flux updates each rotation between latitudes ± 60°. We illustrate the use of the simulations to describe the evolution of the polar fields at the time of the polarity reversals in Cycle 23. The reconstruction of the instantaneous maps is tested by comparison with full-disk magnetograms. The method provides a simple means of estimating the large-scale flux distribution over the whole surface. It does not take account of flux emerging after the central meridian passage each rotation so it is only approximate in the activity belts but provides a reliable map beyond those latitudes.  相似文献   

18.
Zhang  Hongqi 《Solar physics》1997,174(1-2):219-227
In this paper we present the observational results of chromospheric and photospheric magnetograms in active regions obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. Simultaneous observations of the chromospheric and photospheric magnetic fields enable us to construct a possible configuration of the magnetic field in the solar atmosphere. The chromospheric magnetic field shows more diffusion than the photospheric magnetic field and consists of fibril-like features. We also discuss the possible configuration of the magnetic shear in highly sheared active regions.  相似文献   

19.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

20.
Using NSO/Kitt Peak synoptic charts from 1975 to 2003, we group the main solar magnetic fields into two categories: one for active regions (ARs) and the other for extended bipolar regions (EBRs). Comparing them, we find that there exist three typical characteristics in the variability of EBRs: First, there exists a correlation between ARs and EBRs. The phase of EBR flux has a delay nearly two CRs. Second, we find that the EBR flux has two prominent periods at 1.79 years and 3.21 years. The 1.79-year period seems to only belong to large-scale magnetic features. Lastly, the North – South asymmetry of EBR flux is not very significant on a time scale of one solar cycle. However, during solar maxima, its dominance is found to shift from one hemisphere to the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号