首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This paper investigates the tidal effect on accretion disk in CVs and sets up a simplified model in which the secondary's gravitation is substituted by a mean tidal torque. We find that a linear tidal torque will not be able to maintain an equilibrium disk. By using the result of the radius of the equilibrium disk approximately equals to the tidal radius, which was obtained by using the two dimensional numerical simulation invoking nonlinear tidal effect, we give the modified tidal dissipation function for our simplified model which could be used to interpret the outburst of the dwarf nova with tidal effect. The paper also shows that the radius of an equilibrium disk with a torus is slightly small than the Lubow-Shu radius, and the tidal effect may also cause the cycle of quiescence-superoutburst in addition to the cycle of quiescence-outbursts-superoutburst.  相似文献   

2.
The tidal evolution of ten Kepler candidate two-planet systems is investigated by using the general secular perturbation theory, and then a general picture of tidal evolution for these systems is described. Taking the KOI 1239 system as an example, the tidal effect of the system is studied in detail, the results indicate that the dissipative term of the tidal effect causes the attenuation of planets’ orbital eccentricities, and it plays a dominant role in the process of orbital evolution, however, the conservative term of the tidal effect and the relativistic effect may damp the excitation of the eccentricity of the inner planet under the secular perturbation of the outer planet. In addition, the process of tidal evolution is also affected by both the initial eccentricity of the outer planet and the planet's tidal dissipation coeffcient. At the same time, the numerical simulation on the tidal evolution of the KOI 1239 system is also made, and the numerical results are consistent with those of general secular perturbation theory.  相似文献   

3.
本文在潮汐应力、构造应力、地震断层和岩石破裂滑动理论的基础上 ,建立了潮汐应力对地震断层作用的力学模式 ,该模式将潮汐应力与地震应力作用相结合 ,描述了沿地震主压应力和地震主张应力方向的附加潮汐应力对发震断层的力学作用方式 ,从而切入潮汐应力触发地震的物理机制 ,认为潮汐对地震的触发作用在实质上归结为潮汐应力对地震断层的促滑作用 ,这种促滑作用分增压型和减压型。在此模式基础上 ,对中国大陆及邻区的不同类型地震的潮汐触发性进行了研究 ,内容包括 :计算了中国及邻区一千多个地震震源处沿主压应力P轴和主张应力T轴方向的附加潮汐应力分量 ,分析了这些量对发震断层的作用方式 ,按纬度区域统计了受到潮汐应力促滑作用的发震断层类型以及它们与潮汐应力作用方式的关系 ,得到了如下结论 :受到潮汐应力促滑作用的发震断层的比例随区域纬度增加有减小趋势 ,其中 ,走滑型断层的比例在低纬区较大 ,而倾滑斜型断层的比例在中高纬度区较大 ;对整个统计区域而言 ,受增压型潮汐应力促滑作用的发震断层数比例大于受减压型潮汐应力促滑作用的发震断层 ;对不同的纬度区域 ,不同的潮汐应力作用方式与之促滑的发震断层类型也有不同的分布特征。最后 ,本文将中国及邻区受到潮汐触发作用的地震按构造应力  相似文献   

4.
Calculations of the tidal responses of Ganymede and Callisto reveal that tidal amplitudes on these bodies may be as large as a few meters if a liquid ocean exists to decouple the surface ice from the interior. Tides on Ganymede's surface can exceed 7 m peak-to-peak variation, while on Callisto the tidal amplitude can exceed 5 m in the presence of a liquid ocean. Without an ocean, tidal amplitudes are less than 0.5 m on Ganymede and less than 0.3 m on Callisto. An orbiting spacecraft using an altimeter for crossover analysis and Doppler tracking from Earth should be able to achieve sufficient accuracy to identify the tidal amplitude to within about a meter over the course of a few months (observing tens of tidal cycles).  相似文献   

5.
Under the assumption that the secular decrease in the sidereal mean motion of Mercury is due to the Sun-Mercury tidal torque, the expansion of the orbit of Mercury and the tidal phase-lag angle of the tidal bulge are estimated.  相似文献   

6.
Based on recent findings of a formation mechanism of substructure in tidal tails by Küpper et al., we investigate a more comprehensive set of N -body models of star clusters on orbits about a Milky Way like potential. We find that the predicted epicyclic overdensities arise in any tidal tail no matter which orbit the cluster follows as long as the cluster lives long enough for the overdensities to build up.
The distance of the overdensities along the tidal tail from the cluster centre depends for circular orbits only on the mass of the cluster and the strength of the tidal field, and therefore decreases monotonically with time, while for eccentric orbits the orbital motion influences the distance, causing a periodic compression and stretching of the tails and making the distance oscillate with time. We provide an approximation for estimating the distance of the overdensities in this case.
We describe an additional type of overdensity which arises in extended tidal tails of clusters on eccentric orbits, when the acceleration of the tidal field on the stellar stream is no longer homogeneous. Moreover, we conclude that a pericentre passage or a disc shock is not the direct origin of an overdensity within a tidal tail. Escape due to such tidal perturbations does not take place immediately after the perturbation but is rather delayed and spread over the orbit of the cluster. All observable overdensities are therefore of the mentioned two types. In particular, we note that substructured tidal tails do not imply the existence of dark matter substructures in the haloes of galaxies.  相似文献   

7.
We consider how the tidal potential of a stellar cluster or a dense molecular cloud affects the fragmentation of gravitationally unstable molecular cloud cores. We find that molecular cloud cores which would collapse to form a single star in the absence of tidal shear, can be forced to fragment if they are subjected to tides. This may enhance the frequency of binaries in star-forming regions such as Ophiuchus and the frequency of binaries with separations ≲100 au in the Orion Trapezium Cluster. We also find that clouds which collapse to form binary systems in the absence of a tidal potential will form bound binary systems if exposed to weak tidal shear. However, if the tidal shear is sufficiently strong, even though the cloud still collapses to form two fragments, the fragments are pulled apart while they are forming by the tidal shear and two single stars are formed. This sets an upper limit for the separation of binaries that form near dense molecular clouds or in stellar clusters.  相似文献   

8.
We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than 5 times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent. This work has possible implications for the determination of the Roche limit and for spin-state alteration during close flybys.  相似文献   

9.
The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin–Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.  相似文献   

10.
Ilgin Seker 《Solar physics》2013,286(2):303-314
We study whether the birthplaces of sunspots (defined as the location of first appearance in the photosphere) are related to the planetary tides on the Sun. The heliocentric longitudes of newly emerging sunspots are statistically compared to the longitudes of tidal peaks caused by the tidal planets Mercury, Venus, Earth, and Jupiter. The longitude differences between new sunspots and tidal planets (and their conjugate locations) as well as the magnitudes of the vertical and horizontal tidal forces at the birthplace of new sunspots are calculated. The statistical distributions are compared with simulation results calculated using a random sunspot distribution. The results suggest that the birthplaces of sunspots (in the photosphere) are independent of the positions of tidal planets and the strength of tidal forces caused by them. However, since the sunspots actually originate near the tachocline (well below the photosphere) and it takes considerable time for the disturbances to reach photosphere, we hesitate to conclude that the formation of sunspots are not related to planetary positions.  相似文献   

11.
We present the results of new radio interferometer H  i line observations for the merging galaxy pair NGC 4038/9 ('The Antennae'), obtained using the Australia Telescope Compact Array. The results improve substantially with respect to those of van der Hulst and show in detail the two merging galactic discs and the two tidal tails produced by their interaction. The small edge-on spiral dwarf galaxy ESO 572–G045 is also seen near the tip of the southern tail, but distinct from it. It shows no signs of tidal interaction. The northern tidal tail of the Antennae shows no H  i connection to the discs and has an extension towards the west. The southern tidal tail is continuous, with a prominent H  i concentration at its tip, roughly at the location of the tidal dwarf galaxy observed optically by Mirabel, Dottori & Lutz. Clear velocity structure is seen along the tidal tails and in the galactic discs. Radio continuum images at 20 and 13 cm are also presented, showing the discs in detail.  相似文献   

12.
Richard W. Zurek 《Icarus》1981,45(1):202-215
A δ-Eddington radiative transfer algorithm is used to compute the thermal tidal heating of a dusty Martian atmosphere for a given set of dust optical depth, effective single scattering albedo, and phase function asymmetry parameter. The resulting thermal tidal forcing is used in a classical atmospheric tidal model to compute the amplitudes of the surface pressure oscillations at the Viking Lander 1 site for the two 1977 Martian great dust storms. Parametric studies show that the dust opacities and optical parameters derived from the Viking Lander imaging data are roughly representative of the global dust haze needed to reproduce the tidal surface pressure amplitudes also observed at Lander 1, except that the model-inferred asymmetry parameter is smaller during the onset of a great storm. The observed preferential enhancement during dust-storm onset of the semidiurnal tide at Viking Lander 1 relative to its diurnal counterpart is shown to be due primarily to the elevation of the tidal heating source in a very dusty atmosphere, although resonant enhancement of the main semidiurnal tidal mode makes an important secondary contribution.  相似文献   

13.
In this paper, we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine-model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoke the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the non-radial oscillation modes of the star, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motions.  相似文献   

14.
The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models. We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on a model Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a “fluid limit.” The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.  相似文献   

15.
16.
银晕外区存在众多星流,它们或源自银河系的矮伴星系,或源自晕族球状星团,常分别称为矮星系星流和球状星团潮汐尾。星流可以利用各类示踪星,并通过不同的途径加以探测,对若干代表性矮星系星流和球状星团潮汐尾的探测进展做了简要的介绍。  相似文献   

17.
We have explored the hypothesis that the total mass ratio of the two main galaxies of the Local Group, the Andromeda galaxy (M31) and the Milky Way (MW), can be constrained by measuring the tidal force induced by the surrounding mass distribution, M31 included, on the MW. We argue that the total mass ratio between the two groups can be approximated, at least qualitatively, by finding the tidal radius where the internal binding force of the MW balances the external tidal force acting on it. Since M31 is the massive tidal 'perturber' of the local environment, we have used a wide range of M31 to MW mass-ratio combinations to compute the corresponding tidal radii. Of these, only a few match the distance of the zero-tidal shell, i.e. the shell identified observationally by the outermost dwarf galaxies which do not show any sign of tidal effects. This is the key to constraining the best mass-ratio interval of the two galaxies. Our results favour a solution where the mass ratio ranges from 2 to 3, implying a massive predominance of M31.  相似文献   

18.
We present N -body simulations (including an initial mass function) of globular clusters in the Galaxy in order to study effects of the tidal field systematically on the properties of the outer parts of globular clusters. Using nbody6 , which correctly takes into account the two-body relaxation, we investigate the development of tidal tails of globular clusters in the Galactic tidal field. For simplicity, we have employed only the spherical components (bulge and halo) of the Galaxy, and ignored the effects of stellar evolution which could have been important in the very early phase of the cluster evolution. The total number of stars in our simulations is about 20 000, which is much smaller than the realistic number of stars. All simulations had been done for several orbital periods in order to understand the development of the tidal tails. In our scaled-down models, the relaxation time is sufficiently short to show the mass segregation effect, but we did not go far enough to see the core collapse, and the fraction of stars lost from the cluster at the end of the simulations is only ∼10 per cent. The radial distribution of extra-tidal stars can be described by a power law with a slope around −3 in surface density. The directions of tidal tails are determined by the orbits and locations of the clusters. We find that the length of tidal tails increases towards the apogalacticon and decreases towards the perigalacticon. This is an anti-correlation with the strength of the tidal field, caused by the fact that the time-scale for the stars to respond to the potential is similar to the orbital time-scale of the cluster. The escape of stars in the tidal tails towards the pericentre could be another reason for the decrease of the length of tidal tails. We find that the rotational angular velocity of tidally induced clusters shows quite different behaviour from that of initially rotating clusters.  相似文献   

19.
Lijie Han  Adam P. Showman 《Icarus》2010,207(2):834-505
We performed 2D numerical simulations of oscillatory tidal flexing to study the interrelationship between tidal dissipation (calculated using the Maxwell model) and a heterogeneous temperature structure in Europa’s ice shell. Our 2D simulations show that, if the temperature is spatially uniform, the tidal dissipation rate peaks when the Maxwell time is close to the tidal period, consistent with previous studies. The tidal dissipation rate in a convective plume encased in a different background temperature depends on both the plume and background temperature. At a fixed background temperature, the dissipation increases strongly with plume temperature at low temperatures, peaks, and then decreases with temperature near the melting point when a melting-temperature viscosity of 1013 Pa s is used; however, the peak occurs at significantly higher temperature in this heterogeneous case than in a homogeneous medium for equivalent rheology. For constant plume temperature, the dissipation rate in a plume decreases as the surrounding temperature increases; plumes that are warmer than their surroundings can exhibit enhanced heating not only relative to their surroundings but relative to the Maxwell-model prediction for a homogeneous medium at the plume temperature. These results have important implications for thermal feedbacks in Europa’s ice shell.To self-consistently determine how convection interacts with tidal heating that is correctly calculated from the time-evolving heterogeneous temperature field, we coupled viscoelastic simulations of oscillatory tidal flexing (using Tekton) to long-term simulations of the convective evolution (using ConMan). Our simulations show that the tidal dissipation rate resulting from heterogeneous temperature can have a strong impact on thermal convection in Europa’s ice shell. Temperatures within upwelling plumes are greatly enhanced and can reach the melting temperature under plausible tidal-flexing amplitude for Europa. A pre-existing fracture zone (at least 6 km deep) promotes the concentration of tidal dissipation (up to ∼20 times more than that in the surroundings), leading to lithospheric thinning. This supports the idea that spatially variable tidal dissipation could lead locally to high temperatures, partial melting, and play an important role in the formation of ridges, chaos, or other features.  相似文献   

20.
The influence of tidal, interaction on the periods of massive X-ray binaries during the postsupernova evolution is investigated. It is assumed that after a certain time the orbit has become circular and synchronous. The tidal effects of subsequent evolutionary changes in the moment of inertia of the massive component are calculated. It is shown that, as is already suggested by Sparks and Stecher (1974), for small mass ratios and short binary periods a tidal instability may occur resulting in an accelerating inward spiral motion. Before the onset of the instability the tidal forces maintain a nearly synchronous orbit. Possibly the orbits of Cen X-3 and 3 U 1700-37 are already unstable at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号