首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peak in the distribution of apparent magnitude (V) of QSOs at 18.0 can be explained by loss of QSOs forV<-18.0 arising out of selection effects due to the availability of search lines necessary for the determination of redshifts and due to the misidentification of QSOs as Main-Sequence stars. ForV>18.0, the number of objects seem to fall off as they become progressively fainter and detection efficiency goes down. The present analysis also shows that a strong correlation exists between apparent magnitude and redshift of QSOs indicating redshifts are of cosmological origin.  相似文献   

2.
本文计算了一批OH/IR星的绝对K星等Mk,对OH/IR星的Mk和距离d作了讨论。发现当K较亮时,Mk为一常数;当K较暗时,Mk较离散且呈现一定的变化趋势。本文还拟合得到了一个由K星等求距离的经验公式,并由此公式计算了一批OH/IR星的距离。最后,对所得结果进行了解释和讨论。  相似文献   

3.
We present the rest-frame colour–magnitude diagram for 35 early-type galaxies in the Hubble Deep Field with median redshift 0.9.Although with considerable scatter, a red sequence well described by the passive evolution of an intrinsically old stellar population is observed. Comparison with the passively evolved colour–magnitude relation of the rich Coma Cluster (z = 0.023) indicates that at least ∼1/2 of the early-type galaxies in the field at this redshift are as old as those in rich clusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The cross-correlation function is a useful tool in helioseismology. The magnitude of the cross-correlation function has been used to represent the power of wave packets. Dispersion causes a decrease in amplitude and an increase in width of wave packets. This leads to a decrease in magnitude and an increase in width of cross-correlation functions. The effect of dispersion on the magnitude of cross-correlation functions needs to be adequately corrected for in order to use the magnitude of cross-correlation functions to represent the power of wave packets. In this study, we investigate how the magnitude of cross-correlation functions changes with the number of skips owing to dispersion and the method to correct it. Our study, using simulated and observational data, indicates that the correction should be three dimensional instead of the one-dimensional correction adopted in previous studies. Using the three-dimensional correction, the measured dissipation rate in the quiet Sun is smaller than the value of previous studies.  相似文献   

5.
对天琴RR型变星绝对星等运动学参数的测定及其对确定距离、球状星团年龄估计的影响,并对它们和其他距离指示器求得的结果的比较作了评述。由于不同作者采用的方法和资料不同,结果的不确定性较大。例如由直接和间接测定方法决定的天琴RR型变星的绝对星等分成较暗和较亮两类,由天琴RR型变星和其他距离批示器决定大麦哲伦云(LMC)的距离模数和球状星团年龄估计并不完全一致。这表明还有一些天体测量和天体物理问题需要深入  相似文献   

6.
We have used HIPPARCOS proper motions and the method of Statistical Parallax to estimate the absolute magnitude of RR Lyrae stars. In addition, we have used the HIPPARCOS parallax of RR Lyr itself to determine its absolute magnitude. These two results are in excellent agreement with each other and give a zero-point for the RR Lyrae Mv,[Fe/H] relation of 0.77 ± 0.15 at [Fe/H]= -1.53. This zero-point is in good agreement with that obtained recently by several groups using Baade-Wesselink methods which, averaged over the results from the different groups, gives Mv = 0.73 ± 0.14 at [Fe/H] = -1.53. Taking the HIPPARCOS based zero-point and assuming a value of 0.18 ± 0.03 for the slope we find the distance modulus of the LMC is 18.26 ± 0.15. This value is compared with recent estimates based on other methods. Potential problems that may affect the results are outlined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The orbital and absolute magnitude distribution of the near-Earth objects (NEOs) is difficult to compute, partly because only a modest fraction of the entire NEO population has been discovered so far, but also because the known NEOs are biased by complicated observational selection effects. To circumvent these problems, we created a model NEO population which was fit to known NEOs discovered or accidentally rediscovered by Spacewatch. Our method was to numerically integrate thousands of test particles from five source regions that we believe provide most NEOs to the inner Solar System. Four of these source regions are in or adjacent to the main asteroid belt, while the fifth one is associated with the transneptunian disk. The nearly isotropic comets, which include the Halley-type comets and the long-period comets, were not included in our model. Test bodies from our source regions that passed into the NEO region (perihelia q<1.3 AU and aphelia Q≥0.983 AU) were tracked until they were eliminated by striking the Sun or a planet or were ejected out of the inner Solar System. These integrations were used to create five residence time probability distributions in semimajor axis, eccentricity, and inclination space (one for each source). These distributions show where NEOs from a given source are statistically most likely to be located. Combining these five residence time probability distributions with an NEO absolute magnitude distribution computed from previous work and a probability function representing the observational biases associated with the Spacewatch NEO survey, we produced an NEO model population that could be fit to 138 NEOs discovered or accidentally rediscovered by Spacewatch. By testing a range of possible source combinations, a best-fit NEO model was computed which (i) provided the debiased orbital and absolute magnitude distributions for the NEO population and (ii) indicated the relative importance of each NEO source region.Our best-fit model is consistent with 960±120 NEOs having H<18 and a<7.4 AU. Approximately 44% (as of December 2000) have been found so far. The limits on this estimate are conditional, since our model does not include nearly isotropic comets. Nearly isotropic comets are generally restricted to a Tisserand parameter (with respect to Jupiter) of T<2, such that few are believed to have a<7.4 AU. Our computed NEO orbital distribution, which is valid for bodies as faint as H<22, indicates that the Amor, Apollo, and Aten populations contain 32±1%, 62±1%, and 6±1% of the NEO population, respectively. We estimate that the population of objects completely inside Earth's orbit (IEOs) arising from our source regions is 2% the size of the NEO population. This value does not include the putative Vulcanoid population located inside Mercury's orbit. Overall, our model predicts that ∼61% of the NEO population comes from the inner main belt (a<2.5 AU), ∼24% comes from the central main belt (2.5<a<2.8 AU), ∼8% comes from the outer main belt (a>2.8 AU), and ∼6% comes from the Jupiter-family comet region (2<T?3). The steady-state population in each NEO source region, as well as the influx rates needed to replenish each region, were calculated as a by-product of our method. The population of extinct comets in the Jupiter-family comet region was also computed.  相似文献   

8.
We have determined the absolute magnitude at maximum light of SN 1992A by using the turnover magnitude of the globular cluster luminosity function of its parent galaxy, NGC 1380. A recalibration of the peak of the turnover magnitude of the Milky Way clusters using the latest Hipparcos results has been made with an assessment of the complete random and systematic error budget. The following results emerge: a distance to NGC 1380 of 18.6 ± 1.4 Mpc, corresponding to ( m  −  M )  31.35 ± 0.16, and an absolute magnitude of SN 1992A at maximum of M B (max)  −18.79 ± 0.16. Taken at face value, SN 1992A seems to be more than half a magnitude fainter than the other SNe Ia for which accurate distances exist. We discuss the implications of this result and present possible explanations. We also discuss the Phillips relationship between rate of decline and the absolute magnitude at maximum, on the basis of nine SNe Ia, the individual distances of which have been obtained with Cepheids and the globular cluster luminosity function. The new calibration of this relationship, applied to the most distant SNe of the Calan–Tololo survey, yields H 0 = 62 ± 6 km s−1 Mpc−1.  相似文献   

9.
We have detected the optical counterpart of the proposed double degenerate polar RX J1914+24. The I -band light curve is modulated on the 9.5-min period seen in X-rays. There is no evidence for any other periods. No significant modulation is seen in J . The infrared colours of RX J1914+24 are not consistent with a main-sequence dwarf secondary star. Our ASCA spectrum of RX J1914+24 is typical of a heavily absorbed polar and our ASCA light curve also shows only the 9.5-min period. We find that the folded I band and X-ray light curves are out of phase. We attribute the I -band flux to the irradiated face of the donor star. The long-term X-ray light curve shows a variation in the observed flux of up to an order of magnitude. These observations strengthen the view that RX J1914+24 is indeed the first double degenerate polar to be detected. In this light, we discuss the synchronizing mechanisms in such a close binary and other system parameters.  相似文献   

10.
We study the impact of relativistic gravitational deflection of light on the accuracy of future Space Interferometry Mission (SIM). We estimate the deflection angles caused by the monopole, quadrupole and octupole components of gravitational fields for a number of celestial bodies in the solar system. We observe that, in many cases, the magnitude of the corresponding effects is significantly larger than the 1 μas accuracy expected from SIM. This fact argues for the development of a relativistic observational model for the mission that would account for the influence of both static and time-varying effects of gravity on light propagation. Results presented here are different from the ones obtained elsewhere by the fact that we specifically account for the differential nature of the future SIM astrometric measurements. We also obtain an estimate for the accuracy of possible determination of the Eddington’s parameter γ via SIM global astrometric campaign; we conclude that accuracy of ∼7 × 10−6 is achievable via measurements of deflection of light by solar gravity. The article was translated by the authors.  相似文献   

11.
We have monitored the R I magnitudes of the black hole candidate system A0620 − 00 (V616 Mon) in the years 1991–1995 at the Wise Observatory. Combining our data with some additional measurements, we analyse a sparsely covered 7-yr light curve of the star. We find that the average R -band magnitude varies on a time-scale of a few hundred days, with a peak-to-peak amplitude of 0.3 mag. The two maxima in the well-known double hump binary cycle, as well as one of the minima between them, vary by a few per cent relative to one another, in a seemingly random way. One maximum is, on average, higher by 0.05 mag than the other. The depth of the second minimum varies with significantly higher amplitude, in clear correlation with the long-term variability of the mean magnitude of the system. It is shallower than the other minimum at times of maximum light. It deepens when the system brightness declines, and it becomes the deeper of the two minima at times of minimum system light. According to the commonly acceptable phasing of the binary cycle, the systematically varying minimum corresponds to the inferior conjunction of the red dwarf. We cannot suggest any simple geometrical model for explaining the regularities that we find in the long-term photometric behaviour of the V616 Mon binary system.  相似文献   

12.
We present an internal shock model with external characteristics for explaining the complicated light curves of gamma-ray bursts. Shocks produce gamma-rays in the interaction between a precessing beam of relativistic particles and the interstellar medium. Each time the particle beam passes the same line of sight with the observer the interstellar medium is pushed outward. Subsequent interactions between the medium and the beam are delayed by the extra distance to be travelled for the particles before the shock can form. This results in a natural retardation and leads to an intrinsic asymmetry in the light curves produced for gamma-ray bursts. In addition, we account for the cooling of the electron–proton plasma in the shocked region, which gives rise to an exponential decay in the gamma-ray flux. The combination of these effects and the precessing jet of ultrarelativistic particles produces light curves that can be directly compared with observed gamma-ray burst light curves. We illustrate the model by fitting a number of observed gamma-ray bursts that are difficult to explain with only a precessing jet. We develop a genetic algorithm to fit several observed gamma-ray bursts with remarkable accuracy. We find that for different bursts the observed fluence, assuming isotropic emission, easily varies over four orders of magnitude from the energy generated intrinsically.  相似文献   

13.
We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Observatory, on-board the Japanese Experiment Module of the International Space Station. Designed as a mission to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earth’s nighttime atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based observation and we compute the annual exposure in nadir observation. The results are based on studies of the expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of clouds and different types of background light. We show that the annual exposure is about one order of magnitude higher than those of the presently operating ground-based observatories.  相似文献   

14.
Ignacio Ferrín 《Icarus》2005,178(2):493-516
We present the secular light curves of eight comets listed in the title. Two plots per comet are needed to study these objects: a reduced magnitude (to Δ=1 AU = geocentric distance) vs time, and a reduced magnitude vs LogR (R=heliocentric distance). A total of over 16 new parameters, are measured from both plots, and give an unprecedented amount of information to characterize these objects: the onset of sublimation (RON), the offset of sublimation (ROFF), the time lag at perihelion (LAG), the absolute magnitude (m(1,1)), the maximum magnitude at perihelion (mMAX(1,LAG)), the nuclear magnitudes (VN), the amplitude of the secular light curve (ASEC), plus several others, and the photometric functions needed to describe the envelope. The most significant findings of this investigation are: (a) The envelope of the observations is the best representation of the secular light curve. (b) The H10 photometric system is unable to explain the curves and a new set of photometric rules and functions is used. (c) Only four comets exhibit power laws in their secular light curves, and only partially: 1P, 19P, 21P, and 81P. All others have to be described by more complex functions. Of the four, three exhibit a break of the power law, requiring two laws pre-perihelion and one post-perihelion. The reason for this behavior is not understood. (d) We predict the existence of a photometric anomaly in the secular light curve of 67P/Churyumov-Gerasimenko, evidenced by a region of diminished activity from −119 to −6 days before perihelion, that might be interpreted as a topographic effect or the turn off of an active region. (e) We define a photometric parameter (P-AGE) that attempts to measure the relative age of a comet through the activity exhibited in the secular light curve. 81P/Wild 2 (a comet that has recently entered the inner Solar System) is confirmed as a young object, while 28P/Neujmin 1 is confirmed as a very old comet. (f) Arranging the comets by P-AGE also classifies them by shape. A preliminary classification is achieved. (g) The old controversy of what is a nuclear magnitude is clearly resolved.  相似文献   

15.
《New Astronomy》2007,12(4):346-352
We monitored the light variations of 16 solar-type stars recently discovered in the X-ray wave-length range during the ROSAT all-sky survey. We find that 9 out of 16 stars showed appreciable light variability with amplitudes of a few hundredths of a magnitude. They are all proved to be in periodic variations. Using the methods of the phase dispersion minimization (PDM) and Fourier Analysis (PERIOD04), we derive the photometric periods for these stars. The rotational periods are found range from 0.471 to 17.31 days and the period of stars most (of 7 stars) being shorter than 3 days. Apart from binaries system, the results give further evidence for the spin up of solar-type stars as predicted by models of angular momentum evolution of pre-main sequence stars.  相似文献   

16.
17.
Abstract— We have used dual coaxial microchannel plate image-intensified monochrome charge-coupled device (CCD) detectors run at standard NTSC frame rates (30 frames per second, fps) to study the Leonid meteor shower on 1998 November 17 from an airborne platform at an altitude of ~13 km. These observations were part of NASA's 1998 Leonid multi-instrument aircraft campaign (MAC). The observing systems had fields of view (width) of 16.3° and 9.5°, and limiting stellar sensitivities of +8.3m and +8.9m. During 12 h of recording, 230 meteors were detected, of which 65 were Leonid meteors. Light curves are presented for 53 of these meteors. The magnitudes at peak brightness of the meteors investigated were generally in the range from +4.0m to +6.0m. The mass distribution indices for the two samples are 1.67 and 1.44, with the former being based on the wider field of view dataset. The light curves were skewed with the brightest point towards the beginning of the meteor trail. The F parameter for points one magnitude below maximum luminosity had a mean value of 0.47 for the wider field system and 0.37 for the more sensitive narrower field system. We provide leading and trailing edge light curve slopes for each meteor as another indication of light curve shape. There were few obvious flares on the light curves, indicating that in-flight fragmentation into a large number of grains is not common. There is variability in light curve shape from meteor to meteor. The light curves are inconsistent with single, compact body meteor theory, and we interpret the data as indicative of a two-component dustball model with metal or silicate grains bonded by a lower boiling point, possibly organic, substance. The variation in light curve shape may be indicative of differences in mass distribution of the constituent grains. We provide trail length vs. magnitude data. There is only a slight hint of a bend at +5m in the data, representing the difference between meteors that have broken into a cluster of grains prior to grain ablation, and those that continue to fragment during the grain ablation phase. Two specific meteors show interesting light curve features. One meteor is nebulous in appearance, with significant transverse width. The apparent light production region extends for 450 m from the center of the meteor path. Another meteor has several main fragments, and evidence of significant separated fragments. We offer several suggestions for improvements for the 1999 Leonid MAC light curve experiment.  相似文献   

18.
We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle θ or within a core of a uniform energy density  θc  . We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.  相似文献   

19.
研究了海尔-波普彗星1996年9月的光变曲线,发现其在9月10日至11日发生了一次爆发,爆发时核V星等增亮2.1m.相应地,在CCD图像上也发现爆发时彗核抛出的2个球状凝聚物.  相似文献   

20.
C. Blanco  S. Catalano 《Icarus》1975,25(4):585-587
A long-term variation of the magnitude at mean opposition is shown to exist for Io and Titan. The variation of Io seems to be correlated with the orbital period of Jupiter, the maximum light occurring at perihelion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号