首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We present an estimate of the strong lensing probability by dark halos, with emphasis on the role of the baryonic matter arising purely from radiative cooling. We treat the contribution of the cooled baryons optimistically with all the cooled baryons confined within a central core, and including no feedback process from stellar evolution. Our two-component model provides a strong lensing probability that is in good agreement with the observed distribution of multiple images of quasars, provided that the cooled baryons are deposited within a spherical region of radius of 0.1 times the virial radius and follow an isothermal profile. It is pointed out that strong lensing may be used as an additional probe‘of baryon physics in dark halos though this may meanwhile complicate the test of the inner density profiles of dark matter in halos using the observed strong lensing probability.  相似文献   

2.
We present a high-resolution dark matter reconstruction of the   z = 0.165  Abell 901/902 supercluster from a weak lensing analysis of the Hubble Space Telescope STAGES survey. We detect the four main structures of the supercluster at high significance, resolving substructure within and between the clusters. We find that the distribution of dark matter is well traced by the cluster galaxies, with the brightest cluster galaxies marking out the strongest peaks in the dark matter distribution. We also find a significant extension of the dark matter distribution of Abell 901a in the direction of an infalling X-ray group Abell 901α. We present mass, mass-to-light and mass-to-stellar mass ratio measurements of the structures and substructures that we detect. We find no evidence for variation of the mass-to-light and mass-to-stellar mass ratio between the different clusters. We compare our space-based lensing analysis with an earlier ground-based lensing analysis of the supercluster to demonstrate the importance of space-based imaging for future weak lensing dark matter 'observations'.  相似文献   

3.
We study the limits of accuracy for weak lensing maps of dark matter using diffuse 21-cm radiation from the pre-reionization epoch using simulations. We improve on previous 'optimal' quadratic lensing estimators by using shear and convergence instead of deflection angles. This is a generalization of the deflection estimator, and is more optimal for non-Gaussian sources. The cross-power spectrum of shear and convergence is an unbiased estimator of lensing power spectrum which does not require knowledge of the source four-point function. We find that non-Gaussianity provides a limit to the accuracy of weak lensing reconstruction, even if instrumental noise is reduced to zero. The best reconstruction result is equivalent to Gaussian sources with effective independent cell of side length  2.0  h −1 Mpc  . Using a source full map from z = 10 to 20, this limiting sensitivity allows mapping of dark matter at a signal-to-noise ratio greater than 1 out to l ≲ 6000, which is better than any other proposed technique for large-area weak lensing mapping.  相似文献   

4.
Since the strength of weak gravitational lensing is proportional to the mass along the line of sight, it might be possible to use lensing data to find the masses of individual dark matter clusters. Unfortunately, the effect on the lensing field of other matter along the line of sight is substantial. We investigate to what extent we can correct for these projection effects if we have additional information about the most massive halos along the line of sight from deep optical data. We do this by calculating the contributions of these line-of-sight halos to the lensing field and then subtracting off this effect. Three different approaches are used to calculate these contributions: the first approach uses the exact mass distribution of the line-of-sight halos, the second assumes the masses are known and uses the NFW model and the third approach uses richness as an estimator for mass and then also assumes the NFW model. We find that, whichever approach we take, unless we know the masses and positions of line-of-sight halos down to a very low mass, we can only correct for a small part of the line-of-sight projection. We conclude that if we try to use lensing data to find individual cluster masses, there is an error of about 15–20% due to line-of-sight projection that cannot be corrected for.  相似文献   

5.
We present the first optimal power spectrum estimation and three-dimensional deprojections for the dark and luminous matter and their cross-correlations. The results are obtained using a new optimal fast estimator, deprojected using minimum variance and Singular Value Decomposition (SVD) techniques. We show the resulting 3D power spectra for dark matter and galaxies, and their covariance for the VIRMOS-DESCART weak lensing shear and galaxy data. The survey is most sensitive to non-linear scales   k NL∼ 1 h Mpc−1  . On these scales, our 3D power spectrum of dark matter is in good agreement with the RCS 3D power spectrum found by Tegmark & Zaldarriaga. Our galaxy power is similar to that found by the 2MASS survey, and larger than that of SDSS, APM and RCS, consistent with the expected difference in galaxy population.
We find an average bias   b = 1.24 ± 0.18  for the I -selected galaxies, and a cross-correlation coefficient   r = 0.75 ± 0.23  . Together with the power spectra, these results optimally encode the entire two point information about dark matter and galaxies, including galaxy–galaxy lensing. We address some of the implications regarding galaxy haloes and mass-to-light ratios. The best-fitting 'halo' parameter   h ≡ r / b = 0.57 ± 0.16  , suggesting that dynamical masses estimated using galaxies systematically underestimate total mass.
Ongoing surveys, such as the Canada–France–Hawaii Telescope Legacy Survey, will significantly improve on the dynamic range, and future photometric redshift catalogues will allow tomography along the same principles.  相似文献   

6.
Weak lensing surveys are expected to provide direct measurements of the statistics of the projected dark matter distribution. Most analytical studies of weak lensing statistics have been limited to quasi-linear scales as they relied on perturbative calculations. On the other hand, observational surveys are likely to probe angular scales less than 10 arcmin, for which the relevant physical length-scales are in the non-linear regime of gravitational clustering. We use the hierarchical ansatz to compute the multipoint statistics of the weak lensing convergence for these small smoothing angles. We predict the multipoint cumulants and cumulant correlators up to fourth order and compare our results with high-resolution ray-tracing simulations. Averaging over a large number of simulation realizations for four different cosmological models, we find close agreement with the analytical calculations. In combination with our work on the probability distribution function, these results provide accurate analytical models for the full range of weak lensing statistics. The models allow for a detailed exploration of cosmological parameter space and of the dependence on angular scale and the redshift distribution of source galaxies. We compute the dependence of the higher moments of the convergence on the parameters Ω and Λ.  相似文献   

7.
Weak gravitational lensing is now established as a powerful method to measure mass fluctuations in the universe. It relies on the measurement of small coherent distortions of the images of background galaxies. Even low-level correlations in the intrinsic shapes of galaxies could however produce a significant spurious lensing signal. These correlations are also interesting in their own right, since their detection would constrain models of galaxy formation. Using     haloes found in N -body simulations, we compute the correlation functions of the intrinsic ellipticity of spiral galaxies assuming that the disc is perpendicular to the angular momentum of the dark matter halo. We also consider a simple model for elliptical galaxies, in which the shape of the dark matter halo is assumed to be the same as that of the light. For deep lensing surveys with median redshifts ∼1, we find that intrinsic correlations of ∼10−4 on angular scales     are generally below the expected lensing signal, and contribute only a small fraction of the excess signals reported on these scales. On larger scales we find limits to the intrinsic correlation function at a level ∼10−5, which gives a (model-dependent) range of separations for which the intrinsic signal is about an order of magnitude below the ellipticity correlation function expected from weak lensing. Intrinsic correlations are thus negligible on these scales for dedicated weak lensing surveys. For wider but shallower surveys such as SuperCOSMOS, APM and SDSS, we cannot exclude the possibility that intrinsic correlations could dominate the lensing signal. We discuss how such surveys could be used to calibrate the importance of this effect, as well as study spin–spin correlations of spiral galaxies.  相似文献   

8.
The angular cross-correlation between two galaxy samples separated in redshift is shown to be a useful measure of weak lensing by large-scale structure. Angular correlations in faint galaxies arise as a result of spatial clustering of the galaxies as well as gravitational lensing by dark matter along the line of sight. The lensing contribution to the two-point autocorrelation function is typically small compared with the gravitational clustering. However, the cross-correlation between two galaxy samples is almost unaffected by gravitational clustering provided that their redshift distributions do not overlap. The cross-correlation is then induced by magnification bias resulting from lensing by large-scale structure. We compute the expected amplitude of the cross-correlation for popular theoretical models of structure formation. For two populations with mean redshifts of ≃0.3 and 1, we find a cross-correlation signal of ≃1 per cent on arcmin scales and ≃3 per cent on scales of a few arcsec. The dependence on the cosmological parameters Ω and Λ, the dark matter power spectrum and the bias factor of the foreground galaxy population is explored.  相似文献   

9.
Clusters of galaxies offer a robust test bed for probing the nature of dark matter that is insensitive to the assumption of the gravity theories. Both Modified Newtonian Dynamics (MOND) and General Relativity (GR) would require similar amounts of non-baryonic matter in clusters as MOND boosts the gravity only mildly on cluster scales. Gravitational lensing allows us to estimate the enclosed mass in clusters on small (∼20–50 kpc) and large (∼several 100 kpc) scales independent of the assumptions of equilibrium. Here, we show for the first time that a combination of strong and weak gravitational lensing effects can set interesting limits on the phase-space density of dark matter in the centres of clusters. The phase-space densities derived from lensing observations are inconsistent with neutrino masses ranging from 2–7 eV, and hence do not support the 2 eV-range particles required by MOND. To survive, the most plausible modification for MOND may be an additional degree of dynamical freedom in a covariant incarnation.  相似文献   

10.
We investigate how strong gravitational lensing in the concordance ΛCDM cosmology is affected by the stellar mass in galaxies. We extend our previous studies, based on ray tracing through the Millennium Simulation, by including the stellar components predicted by galaxy formation models. We find that the inclusion of these components greatly enhances the probability for strong lensing compared to a 'dark matter only' universe. The identification of the 'lenses' associated with strong-lensing events reveals that the stellar mass of galaxies (i) significantly enhances the strong-lensing cross-sections of group and cluster haloes and (ii) gives rise to strong lensing in smaller haloes, which would not produce noticeable effects in the absence of the stars. Even if we consider only image splittings ≳10 arcsec, the luminous matter can enhance the strong-lensing optical depths by up to a factor of 2.  相似文献   

11.
zobov (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points, without any free parameters, or assumptions about shape. It uses the Voronoi tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes the zobov algorithm, and the results from its application to the dark matter particles in a region of the Millennium simulation. Additionally, the paper points out an interesting high-density peak in the probability distribution of dark matter particle densities.  相似文献   

12.
We propose to use multiple-imaged gravitational lenses to set limits on gravity theories without dark matter, specifically tensor–vector–scalar (TeVeS) theory, a theory which is consistent with fundamental relativistic principles and the phenomenology of Modified Newtonian Dynamics (MOND) theory. After setting the framework for lensing and cosmology, we analytically derive the deflection angle for the point lens and the Hernquist galaxy profile, and study their patterns in convergence, shear and amplification. Applying our analytical lensing models, we fit galaxy-quasar lenses in the CfA-Arizona Space Telescope Lens Survey (CASTLES) sample. We do this with three methods, fitting the observed Einstein ring sizes, the image positions, or the flux ratios. In all the cases, we consistently find that stars in galaxies in MOND/TeVeS provide adequate lensing. Bekenstein's toy μ function provides more efficient lensing than the standard MOND μ function. But for a handful of lenses, a good fit would require a lens mass orders of magnitude larger/smaller than the stellar mass derived from luminosity unless the modification function μ and modification scale a 0 for the universal gravity were allowed to be very different from what spiral galaxy rotation curves normally imply. We discuss the limitation of present data and summarize constraints on the MOND μ function. We also show that the simplest TeVeS 'minimal-matter' cosmology, a baryonic universe with a cosmological constant, can fit the distance–redshift relation from the supernova data, but underpredicts the sound horizon size at the last scattering. We conclude that lensing is a promising approach to differentiate laws of gravity.  相似文献   

13.
We discuss how different cosmological models of the Universe affect the probability that a background source has multiple images related by an angular distance, i.e., the optical depth of gravitational lensing. We examine some cosmological models for different values of the density parameter Ω i : (i) the cold dark matter model, (ii) the ΛCDM model, (iii) the Bose-Einstein condensate dark matter model, (iv) the Chaplygin gas model, (v) the viscous fluid cosmological model and (vi) the holographic dark energy model by using the singular isothermal sphere (SIS) model for the halos of dark matter. We note that the dependence of the energy-matter content of the universe profoundly modifies the frequency of multiple quasar images.  相似文献   

14.
Gravitational lensing deflects light. A single lens deflector can only shear images, but cannot induce rotations. Multiple lens planes can induce rotations. Such rotations can be observed in quadruply imaged sources, and can be used to distinguish between two proposed solutions of the flux anomaly problem: substructures in lensing galaxies versus large-scale structure. We predict the expected amount of rotation due to large-scale structure in strong lensing systems, and show how this effect can be measured using ∼mas very long baseline interferometry astrometry of quadruple lenses with extended source structures. The magnitude of rotation is around 1°. The biggest theoretical uncertainty is the power spectrum of dark matter on very small scales. This procedure can potentially be turned around to measure the dark matter power spectrum on very small scales. We list the predicted rms rotation angles for several quadruple lenses with known lens and source redshifts.  相似文献   

15.
Many recent studies have demonstrated that scaling arguments, such as the so-called hierarchical ansatz, are extremely useful in understanding the statistical properties of weak gravitational lensing. This is especially true on small angular scales (i.e. at high resolution), where the usual perturbative calculations of matter clustering no longer apply. We build on these studies in order to develop a complete picture of weak lensing at small smoothing angles. In particular, we study the full probability distribution function, bias and other multipoint statistics for the 'hot spots' of the convergence field induced by weak lensing, and relate these to the statistics of overdense regions in the underlying mass distribution. It is already known that weak lensing can constrain the background geometry of the Universe, but we further show that it can also provide valuable information about the statistics of collapsed objects and the physics of collisionless clustering. Our results are particularly important for future observations which will, at least initially, focus on small smoothing angles.  相似文献   

16.
We investigate strong gravitational lensing in the concordance ΛCDM cosmology by carrying out ray tracing along past light cones through the Millennium Simulation, the largest simulation of cosmic structure formation ever carried out. We extend previous ray-tracing methods in order to take full advantage of the large volume and the excellent spatial and mass resolution of the simulation. As a function of source redshift we evaluate the probability that an image will be highly magnified, will be highly elongated or will be one of a set of multiple images. We show that such strong lensing events can almost always be traced to a single dominant lensing object and we study the mass and redshift distribution of these primary lenses. We fit analytic models to the simulated dark haloes in order to study how our optical depth measurements are affected by the limited resolution of the simulation and of the lensing planes that we construct from it. We conclude that such effects lead us to underestimate total strong lensing cross-sections by about 15 per cent. This is smaller than the effects expected from our neglect of the baryonic components of galaxies. Finally we investigate whether strong lensing is enhanced by material in front of or behind the primary lens. Although strong lensing lines of sight are indeed biased towards higher than average mean densities, this additional matter typically contributes only a few per cent of the total surface density.  相似文献   

17.
The steep source counts and negative K -corrections of bright submillimetre galaxies (SMGs) suggest that a significant fraction of those observed at high flux densities may be gravitationally lensed, and that the lensing objects may often lie at redshifts above 1, where clusters of galaxies are difficult to detect through other means. In this case, follow-up of bright SMGs may be used to identify dense structures along the line-of-sight. Here, we investigate the probability for SMGs to experience strong lensing, using the latest N -body simulations and observed source flux and redshift distributions. We find that almost all high-redshift sources with a flux density above 100 mJy will be lensed if they are not relatively local galaxies. We also give estimates of the fraction of sources experiencing strong lensing as a function of observed flux density. This has implications for planning follow-up observations for bright SMGs discovered in future surveys with the Submillimetre Common-User Bolometer Array 2 and other instruments. The largest uncertainty in these calculations is the maximum allowed lensing amplification, which is dominated by the presently unknown spatial extent of SMGs.  相似文献   

18.
Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio and image separation distribution, with a flexible treatment of magnification bias to mimic different survey strategies. We present our results for two families of density profiles: cusped and deprojected Sérsic models. While we use fixed lens and source redshifts for most of the analysis, we show that the results are applicable to other redshift combinations, and we also explore the physics of how our results change for very different redshifts. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sérsic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.  相似文献   

19.
We use semi-analytic models of galaxy formation combined with high-resolution N -body simulations to make predictions for galaxy–dark matter correlations and apply them to galaxy–galaxy lensing. We analyse cross-power spectra between the dark matter and different galaxy samples selected by luminosity, colour or star formation rate. We compare the predictions with the recent detection by the Sloan Digital Sky Survey (SDSS). We show that the correlation amplitude and the mean tangential shear depend strongly on the luminosity of the sample on scales below 1  h −1 Mpc, reflecting the correlation between the galaxy luminosity and the halo mass. The cross-correlation cannot, however, be used to infer the halo profile directly because different halo masses dominate on different scales and because not all galaxies are at the centres of the corresponding haloes. We compute the redshift evolution of the cross-correlation amplitude and compare it with those of galaxies and dark matter. We also compute the galaxy–dark matter correlation coefficient and show that it is close to unity on scales above 1  h −1 Mpc for all considered galaxy types. This would allow one to extract the bias and the dark matter power spectrum on large scales from the galaxy and galaxy–dark matter correlations.  相似文献   

20.
We present the results of a set of numerical simulations evaluating the effect of cluster galaxies on arc statistics.
We perform a first set of gravitational lensing simulations using three independent projections for each of nine different galaxy clusters obtained from N -body simulations. The simulated clusters consist of dark matter only. We add a population of galaxies to each cluster, mimicking the observed luminosity function and the spatial galaxy distribution, and repeat the lensing simulations including the effects of cluster galaxies, which themselves act as individual lenses. Each galaxy is represented by a spherical Navarro, Frenk & White density profile.
We consider the statistical distributions of the properties of the gravitational arcs produced by our clusters with and without galaxies. We find that the cluster galaxies do not introduce perturbations strong enough to significantly change the number of arcs and the distributions of lengths, widths, curvature radii and length-to-width ratios of long arcs. We find some changes to the distribution of short-arc properties in the presence of cluster galaxies. The differences appear in the distribution of curvature radii for arc lengths smaller than 12 arcsec, while the distributions of lengths, widths and length-to-width ratios are significantly changed only for arcs shorter than 4 arcsec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号