首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Antarctic carbonaceous chondrites DOM 08004 and DOM 08006 have been paired and classified as CO3.0s. There is some uncertainty as to whether they should be paired and whether they are best classified as CO chondrites, but they provide an opportunity for the study of refractory inclusions that have not been modified by parent body processes. In this work, refractory inclusions in thin sections of DOM 08004 and 08006 are studied and compared with inclusions in ALHA77307 (CO3.0) and Acfer 094 (C3.0, ungrouped). Results show that the DOM samples have refractory inclusion populations that are similar to each other but not typical of CO3 chondrites; main differences are that the DOM samples are slightly richer in inclusions in general and, more specifically, in the proportions of grossite‐bearing inclusions. In DOM 08004 and DOM 08006, 12.4% and 6.6%, respectively, of the inclusions are grossite‐bearing. This is higher than the proportion found in Acfer 094 (5.2%), whereas none were found in ALHA77307. Like those in Acfer 094, DOM inclusions are small (mostly <100 μm across) and fine‐grained, and thin rims of aluminous diopside±melilite are very common. Also like Acfer 094, most phases in the DOM inclusions have FeO contents higher than expected for primary refractory phases. In addition to typical inclusions, some unusual ones were found in DOM 08004, including a perovskite‐rich one with a rare, recently reported Sc‐, Al‐oxide and davisite; a very grossite‐rich inclusion with a small, hibonite‐rich core enclosed in a grossite mantle; and a relict, grossite‐rich inclusion enclosed in an Al‐rich chondrule. The CAI populations in the DOM samples are similar to each other and, based on grossite abundances, FeO enrichments and occurrences of rims are more Acfer 094‐like than CO3‐like. An earlier history on an FeO‐rich parent was previously favored over nebular equilibria or in situ reactions to account for FeO enrichments in CAIs in the otherwise pristine chondrite Acfer 094, and a similar history is indicated for the DOM CAIs. Acfer 094, DOM 08004 and 08006 might best be classified as a new subgroup of CO3 chondrites.  相似文献   

2.
Abstract— We report the results of our petrological and mineralogical study of Fe‐Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe‐Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni‐rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni‐rich metal in type 3.15–3.9 chondrites always contains less Co than does kamacite. Fe‐Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni‐rich regions. Metal in other type 3 chondrites is composed of fine‐ to coarse‐grained aggregates of kamacite and Ni‐rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni‐rich grains in metal (number of Ni‐rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe‐Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe‐Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01.  相似文献   

3.
Abstract– Acfer 094 is an unshocked, nearly unaltered carbonaceous chondrite with an unusual suite of refractory inclusions. The refractory inclusions in a newly prepared thin section and a small aliquot of disaggregated material were studied to compare the population with previous work, and to report new or unusual inclusion types. A total of 289 Ca‐, Al‐rich inclusions in the thin section and 67 among the disaggregated material, having a total of 31 different mineral assemblages, were found. Inclusions are largely free of secondary alteration products, and are typically ≤200 μm across. The most common are gehlenitic melilite+spinel±perovskite, spinel+perovskite, and spinel with a thin, silicate rim, typically melilite±diopside. Such rims and (thicker) mantles are very common among Acfer 094 inclusions, and they exhibit a variety of zoning patterns with respect to åkermanite and FeO contents. In the thin section, about 13% of the inclusions contain hibonite and approximately 5% are grossite‐bearing; in the disaggregated material, the percentages are 14 and 9, respectively, comparable to previous work. Among the unusual inclusions are a fine‐grained, porous, Ti‐rich hibonite+spinel+perovskite+melilite inclusion with a compact, coarse, Ti‐poor hibonite+spinel+melilite clast; two inclusions in which hibonite has reacted to form grossite; two inclusions with FeO‐rich spinel; and a small object consisting of fassaite enclosing euhedral spinel, the first fragment of a Type B inclusion reported from Acfer 094. Inclusions similar to those found in CM or CV chondrites are rare; Acfer 094 contains a distinctive population of inclusions. The population, dominated by small, melilite‐bearing inclusions, is most similar to that of CO chondrites. A distinguishing feature is that in Acfer 094, almost every phase in almost every refractory inclusion contains 0.5–1.5 wt% FeO. A lack of diffusion gradients and the pristinity of the matrix imply that the inclusions experienced prolonged exposure to FeO‐bearing fluid prior to accretion into the Acfer 094 parent body. There are no known nebular conditions under which the refractory phases found in the present samples could acquire FeO enrichments to the observed levels. The most likely setting is therefore in an earlier, FeO‐rich parent body. The inclusions were ejected from this parent body, mixed with typical CAIs, chondrules, amoeboid olivine aggregates, and amorphous material, and incorporated into the Acfer 094 parent body.  相似文献   

4.
Abstract— The ten specimens of the paired Acfer 059/El Djouf 001 CR2 chondrite contain abundant lithic fragments which we refer to as dark clasts. Petrological and mineralogical studies reveal that they are not related to the CR2 host meteorite but are similar to dark clasts in other CR2 chondrites. Dark clasts consist of chondrule and mineral fragments, phyllosilicate fragments and clusters, magnetite, sulfides and accessory phases, embedded into a very fine-grained, phyllosilicate-rich matrix. Magnetite has morphologies known from CI chondrites: spherules, framboids and platelets. Average abundances of major elements in the dark clasts are mostly in the range of both CR and CV chondrites, but strong depletions in Na and S are apparent. Oxygen isotopic compositions of two dark clasts suggest relationships to type 3 carbonaceous chondrites and dark inclusions in Allende. The dark clasts are clearly different in texture and mineralogical composition from the host matrix of Acfer 059/El Djouf 001. Therefore, these dark clasts are xenoliths and are quite unlike the Acfer 059/El Djouf 001 CR2 host meteorite. We suggest that dark clasts accreted at the same time with all other components during the formation of Acfer 059/El Djouf 001 whole rock.  相似文献   

5.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

6.
Nanoscale amorphous silicates are a major component in primitive carbonaceous chondrite matrices and anhydrous interplanetary dust particles. Owing to their metastability and sensitive response to reactions with water, this material is of particular interest in understanding nebular and parent body processes in the early solar system. Here we investigated the amorphous silicate matrix (ASM) in the ungrouped carbonaceous chondrite Acfer 094 regarding its texture, chemical composition, and Fe oxidation state. We applied transmission electron microscopy techniques on six, focused ion beam technique-prepared, electron-transparent lamellae of Acfer 094 to determine the textures of this material. Furthermore, we used energy-dispersive X-ray analysis and electron energy loss spectroscopy to quantify the Fe content and the Fe oxidation state of the ASM. Textural investigations reveal differences in sulfide content, porosity, and distribution of the ASM among the samples, as well as evidence for rare recrystallization of phyllosilicate fibers. The chemical composition reveals mobilization of Fe. Furthermore, the determined Fe3+/ΣFe ratios of the ASM in the six samples display a homogeneously high oxidation state (0.66–0.73). This high and homogeneous Fe oxidation state in the ASM of Acfer 094 disagrees with its formation as a primary phase in a reduced solar gas and must have been induced in a later stage process. Most likely, this process was aqueous alteration on the Acfer 094 parent body, which led to hydration and oxidation of the ASM, which is supported by textural and chemical evidence of aqueous alteration.  相似文献   

7.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   

8.
Abstract— This study presents the first determinations of 39Ar‐40Ar ages of R chondrites for the purpose of understanding the thermal history of the R chondrite parent body. The 39Ar‐40Ar ages were determined on whole‐rock samples of four R chondrites: Carlisle Lakes, Rumuruti, Acfer 217, and Pecora Escarpment #91002 (PCA 91002). All samples are breccias except for Carlisle Lakes. The age spectra are complicated by recoil and diffusive loss to various extents. The peak 39Ar‐40Ar ages of the four chondrites are 4.35, ?4.47 ± 0.02, 4.30 ± 0.07 Ga, and 4.37 Ga, respectively. These ages are similar to Ar‐Ar ages of relatively unshocked ordinary chondrites (4.52–4.38 Ga) and are older than Ar‐Ar ages of most shocked ordinary chondrites («4.2 Ga). Because the meteorites with the oldest (Rumuruti, ?4.47 Ga) and the youngest (Acfer 217, ?4.30 Ga) ages are both breccias, these ages probably do not record slow cooling within an undisrupted asteroidal parent body. Instead, the process of breccia formation may have differentially reset the ages of the constituent material, or the differences in their age spectra may arise from mixtures of material that had different ages. Two end‐member type situations may be envisioned to explain the age range observed in the R chondrites. The first is if the impact(s) that reset the ages of Acfer 217 and Rumuruti was very early. In this case, the ?170 Ma maximum age difference between these meteorites may have been produced by much deeper burial of Acfer 217 than Rumuruti within an impact‐induced thick regolith layer, or within a rubble pile type parent body following parent body re‐assembly. The second, preferred scenario is if the impact that reset the age of Acfer 217 was much later than that which reset Rumuruti, then Acfer 217 may have cooled more rapidly within a much thinner regolith layer. In either scenario, the oldest age obtained here, from Rumuruti, provides evidence for relatively early (?4.47 Ga) impact events and breccia formation on the R chondrite parent body.  相似文献   

9.
Abstract— We report in situ magnesium isotope measurements of 7 porphyritic magnesium‐rich (type I) chondrules, 1 aluminum‐rich chondrule, and 16 refractory inclusions (14 Ca‐Al‐rich inclusions [CAIs] and 2 amoeboid olivine aggregates [AOAs]) from the ungrouped carbonaceous chondrite Acfer 094 using a Cameca IMS 6f ion microprobe. Both AOAs and 9 CAIs show radiogenic 26Mg excesses corresponding to initial 26Al/27Al ratios between ~5 × 10?5 ~7 × 10?5 suggesting that formation of the Acfer 094 CAIs may have lasted for ~300,000 years. Four CAIs show no evidence for radiogenic 26Mg; three of these inclusions (a corundum‐rich, a grossite‐rich, and a pyroxene‐hibonite spherule CAI) are very refractory objects and show deficits in 26Mg, suggesting that they probably never contained 26Al. The fourth object without evidence for radiogenic 26Mg is an anorthite‐rich, igneous (type C) CAI that could have experienced late‐stage melting that reset its Al‐Mg systematics. Significant excesses in 26Mg were observed in two chondrules. The inferred 26Al/27Al ratios in these two chondrules are (10.3 ± 7.4) × 10?6 (6.0 ± 3.8) × 10?6 (errors are 2σ), suggesting formation 1.6+1.2‐0.6 and 2.2+0.4‐0.3 Myr after CAIs with the canonical 26Al/27Al ratio of 5 × 10?5. These age differences are consistent with the inferred age differences between CAIs and chondrules in primitive ordinary (LL3.0–LL3.1) and carbonaceous (CO3.0) chondrites.  相似文献   

10.
Abstract— We have used a variety of complementary microanalytical techniques to constrain the mineralogy, trace‐element distributions, and oxygen‐isotopic compositions in a 50 × 50 μm area of Acfer 094 matrix. The results reveal the exceptional mineralogical and compositional heterogeneity of this material at the sub‐μm level. We observe μm‐scale and sub‐μm grains with elemental associations suggesting feldspar, metal with widely varying Ni contents, and a Cr‐Fe alloy (in addition to forsterite, pyroxene, sulfide, ferrihydrite, and amorphous groundmass previously described). A new class of μm‐scale CAI (μCAI) is also observed, which show sub‐μm compositional zoning, and a range of oxygen isotopic compositions. Unlike the larger CAIs in Acfer 094, which are uniformly 16O‐enriched, two of the three μCAIs we analyzed are isotopically normal. We also observed a Li‐rich hotspot that detailed analysis by ToF‐SIMS suggests may be a LiCr‐oxide grain. Within the resolution of the NanoSIMS, this grain has isotopically normal Li. Finally, in our 50 × 50 μm area, we positively identified a presolar grain that is the most 18O‐rich silicate found so far in meteorites. The grain may originate from an asymptotic giant branch (AGB) star, or more likely, a supernova. In line with previous TEM studies (Greshake 1997), we find no evidence for clastic material (e.g., fragmental chondrules) in the matrix of Acfer 094: although the matrix is volatile‐depleted, this depletion does not appear to result from dilution of a primordial starting material with (depleted) chondrule fragments. Assuming that matrix experienced the depletion event, our data on the detailed mineralogy of Acfer 094 are currently equivocal in constraining the nature of that event. We observe carrier phases for several elements consistent with conditions approaching equilibrium condensation; however, the presence of an amorphous groundmass is suggestive of more rapid cooling.  相似文献   

11.
Abstract– We review the 26Al ages of chondrules in various type 3.0 chondrites. The 26Al ages of chondrules are 1–3 Myr after calcium‐aluminum‐rich inclusion (CAI) for LL3.0, CO3.0, and Acfer 094 (Ungrouped C 3.0). Available data for chondrules in CR chondrites indicate that many chondrules are relatively younger (≥3 Myr), although data from chondrules in CR3.0 are not yet available to confirm their younger ages. The total ranges for the 26Al ages of chondrules in a single chondrite group are more than 0.5–1 Myr. However, most chondrules show relatively narrow range of ages in a single chondrite group (0.2–0.4 Myr, 1 SD), which might be short enough to preserve the group‐specific chemical and isotope signatures against radial diffusion of solid in the disk. Distinct oxygen isotope reservoirs might exist in the protoplanetary disk simultaneously, which could be spatially separated.  相似文献   

12.
Abstract– LaPaz Icefield (LAP) 04581 is a shock‐stage S2 LL5 chondrite that initially consisted of unrecrystallized LL3 material with a moderately abundant fine‐grained porous matrix (on the order of 15 vol%). A rare oblique impact created shearing stresses that produced a petrofabric in the rock, induced frictional melting of troilite (thereby forming a large troilite vein), and caused chondrule flattening. The latter process was facilitated by impact‐induced collapse of matrix pores. Chondrule flattening could not have occurred if the rock had been impacted after it had been metamorphosed to type 5 levels because the fine‐grained matrix would have previously recrystallized and developed low porosity. Ar‐Ar dating of LAP 04581 yields an age of 4175 Ma. This date is long after 26Al had decayed away and most likely reflects the timing of a second impact event that shocked the rock to S4–S5 levels. The troilite vein became polycrystalline at this time and the whole rock was annealed to petrologic type 5, perhaps by being buried beneath hot ejecta of low thermal diffusivity. After annealing, the rock was weakly shocked to S2 levels. LAP 04581 serves as an example of impact‐induced heating being a viable mechanism for chondrite metamorphism.  相似文献   

13.
Abstract– We used instrumental neutron activation analysis and petrography to determine bulk and phase compositions and textural characteristics of 15 carbonaceous chondrites of uncertain classification: Acfer 094 (type 3.0, ungrouped CM‐related); Belgica‐7904 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Wisconsin Range (WIS) 91600, Dhofar 225, and Yamato‐86720); Dar al Gani (DaG) 055 and its paired specimen DaG 056 (anomalous, reduced CV3‐like); DaG 978 (type 3 ungrouped); Dominion Range 03238 (anomalous, magnetite‐rich CO3.1); Elephant Moraine 90043 (anomalous, magnetite‐bearing CO3); Graves Nunataks 98025 (type 2 or type 3 ungrouped); Grosvenor Mountains (GRO) 95566 (anomalous CM2 with a low degree of aqueous alteration); Hammadah al Hamra (HaH) 073 (type 4 ungrouped, possibly related to the Coolidge‐Loongana [C‐L] 001 grouplet); Lewis Cliff (LEW) 85311 (anomalous CM2 with a low degree of aqueous alteration); Northwest Africa 1152 (anomalous CV3); Pecora Escarpment (PCA) 91008 (anomalous, metamorphosed CM); Queen Alexandra Range 99038 (type 2 ungrouped); Sahara 00182 (type 3 ungrouped, possibly related to HaH 073 and/or to C‐L 001); and WIS 91600 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Belgica‐7904, Dhofar 225, and Y‐86720). Many of these meteorites show fractionated abundance patterns, especially among the volatile elements. Impact volatilization and dehydration as well as elemental transport caused by terrestrial weathering are probably responsible for most of these compositional anomalies. The metamorphosed CM chondrites comprise two distinct clusters on the basis of their Δ17O values: approximately ?4‰ for PCA 91008, GRO 95566, DaG 978, and LEW 85311, and approximately 0‰ for Belgica‐7904 and WIS 91600. These six meteorites must have been derived from different asteroidal regions.  相似文献   

14.
Abstract— In this paper we report petrological and chemical data of the unusual chondritic meteorites Yamato (Y)‐792947, Y‐93408 and Y‐82038. The three meteorites are very similar in texture and chemical composition, suggesting that they are pieces of a single fall. The whole‐rock oxygen isotopes and the chemical compositions are indicative of H chondrites. In addition, the mineralogy, and the abundances of chondrule types, opaque minerals and matrices suggest that these meteorites are H3 chondrites. They were hardly affected by thermal and shock metamorphism. The degree of weathering is very low. We conclude that these are the most primitive H chondrites, H3.2–3.4 (S1), known to date. On the other hand, these chondrites contain extraordinarily high amounts of refractory inclusions, intermediate between those of ordinary and carbonaceous chondrites. The distribution of the inclusions may have been highly heterogeneous in the primitive solar nebula. The mineralogy, chemistry and oxygen isotopic compositions of inclusions studied here are similar to those in CO and E chondrites.  相似文献   

15.
Abstract— CM2 carbonaceous chondrites are the most primitive material present in the solar system, and some of their subtypes, the CM and CI chondrites, contain up to 2 wt% of organic carbon. The CM2 carbonaceous chondrites contain a wide variety of complex amino acids, while the CI1 meteorites Orgueil and Ivuna display a much simpler composition, with only glycine and β‐alanine present in significant abundances. CM1 carbonaceous chondrites show a higher degree of aqueous alteration than CM2 types and therefore provide an important link between the CM2 and CI1 carbonaceous chondrites. Relative amino acid concentrations have been shown to be indicative for parent body processes with respect to the formation of this class of compounds. In order to understand the relationship of the amino acid composition between these three types of meteorites, we have analyzed for the first time three Antarctic CM1 chondrites, Meteorite Hills (MET) 01070, Allan Hills (ALH) 88045, and LaPaz Icefield (LAP) 02277, using gas chromatography‐mass spectrometry (GC‐MS) and high performance liquid chromatography‐fluorescence detection (HPLC‐FD). The concentrations of the eight most abundant amino acids in these meteorites were compared to those of the CM2s Murchison, Murray, Mighei, Lewis Cliff (LEW) 90500, ALH 83100, as well as the CI1s Orgueil and Ivuna. The total amino acid concentration in CM1 carbonaceous chondrites was found to be much lower than the average of the CM2s. Relative amino acid abundances were compared in order to identify synthetic relationships between the amino acid compositions in these meteorite classes. Our data support the hypothesis that amino acids in CM‐ and CI‐type meteorites were synthesized under different physical and chemical conditions and may best be explained with differences in the abundances of precursor compounds in the source regions of their parent bodies in combination with the decomposition of amino acids during extended aqueous alteration.  相似文献   

16.
Abstract— Modal abundances of Ca,Al‐rich inclusions (CAIs) are poorly known and reported data scatter across large ranges. CAIs are Poisson distributed, and if only small areas (<1000 mm2) are studied, the data are probably not representative of the true CAI modal abundances, explaining their reported large scatter in a single chondrite group. We combine reported CAI modal abundances and our own set, and present a complete list of CAI modal abundances in carbonaceous chondrites. This includes (in area%): CV: 2.98, CM: 1.21, Acfer 094: 1.12, CO: 0.99, CK/CV (Ningqiang and Dar al Gani [DaG] 055): 0.77, CK: 0.2, CR: 0.12 and CB: 0.1. CAIs are Poisson distributed and if only small areas are studied, the data are probably not representative of the true CAI modal abundances, Carbonaceous chondrites have excess bulk Al concentrations when compared to the CI‐chondritic value. We find a correlation between this excess and CAI modal abundances and conclude that the excess Al was delivered by CAIs. The excess Al is only a minor fraction (usually ?10 rel%, but 25 rel% in case of CVs) of the bulk chondrite Al and cannot have contributed much 26Al to heat the chondrite parent body. Ordinary, enstatite, R and K chondrites have an Al deficit relative to CI chondrites and only very low CAI modal abundances, if any are present at all. Carbonaceous chondrites also had an initial Al deficit if the contribution of Al delivered by CAIs is subtracted. Therefore all chondrites probably lost a refractory rich high‐T component. Only minor amounts of CAIs are present in the matrix or have been present in the chondrule precursor aggregates. Most CAI size distributions contain more than one size population, indicating that CAIs from within a single meteorite group had different origins.  相似文献   

17.
Abstract— We performed in situ morphological and isotopic studies of graphite in the primitive chondrites Khohar (L3), Mezö‐Madaras (L3), Inman (L3), Grady (H3), Acfer 182 (CH3), Acfer 207 (CH3), Acfer 214 (CH3), and St. Marks (EH5). Various graphite morphologies were identified, including book, veins, fibrous, fine‐grained, spherulitic, and granular graphite, and cliftonite. SIMS measurements of H, C, N, and O isotopic compositions of the graphites revealed large variations in the isotopic ratios of these four elements. The δ15N and δ13C values show significant variations among the different graphite types without displaying any strict correlation between the isotopic composition and morphology. In the Khohar vein graphites, large 15N excesses are found, with δ15Nmax ~+955‰, confirming previous results. Excesses in 15N are also detected in fine‐grained graphites in chondrites of the CH clan, Acfer 182, Acfer 207, and Acfer 214, with δ15N ranging up to +440‰. The 15N excesses are attributed to ion‐molecule reactions at low temperatures in the interstellar molecular cloud (IMC) from which the solar system formed, though the largest excesses seem to be incompatible with the results of some recent calculation. Significant variations in the carbon isotopic ratios are detected between graphite from different chondrite groups, with a tendency for a systematic increase in δ13C from ordinary to enstatite to carbonaceous chondrites. These variations are interpreted as being due to small‐ and large‐scale carbon isotopic variations in the solar nebula.  相似文献   

18.
In numerous past papers, it was concluded that the fine (<1 μm) matrix immediately adjacent to, and radially symmetric around, chondrules in primitive chondrites consists of compact (low‐porosity) rims that were attached in the solar nebula. We present here textural and compositional evidence that no matrix‐like (or accretionary) rims around chondrules are present in the well‐preserved CR2 chondrite LAP 02342. Fine‐grained matrix‐rich regions (i.e., candidate “rims”) at the edges of chondrules were studied with an electron‐microprobe‐based matrix‐grid technique; comparison of the “rims” data for matrix regions near these chondrules showed the candidate “rims” to be compositionally heterogeneous, inconsistent with origins as radially symmetric, matrix‐like rims formed by gradual accretion. This evidence (together with simulations and laboratory studies indicating that accretionary processes produced highly porous aggregates) strongly suggests that nebular processes did not produce compact matrix‐like rims around chondrules in any chondrite group.  相似文献   

19.
Abstract— The recovery of large numbers of meteorites from Antarctica has dramatically increased the amount of extraterrestrial material available for laboratory studies of solar system origin and evolution. Yet, the great age of Antarctic meteorites raises the concern that significant amounts of terrestrial weathering has corrupted their pre‐terrestrial record. Organic matter found in carbonaceous chondrites is one of the components most susceptible to alteration by terrestrial processes. To assess the effects of Antarctic weathering on both non‐Antarctic and Antarctic chondritic organic matter, a number of CM chondrites have been analyzed. Mössbauer spectroscopy has been used to ascertain pre‐terrestrial and terrestrial oxidation levels, while pyrolysis‐gas chromatography‐mass spectrometry was used to determine the constitution of any organic matter present. Increased oxidation levels for iron bearing minerals within the non‐Antarctic chondrites are likely to be a response to increased amounts of parent body aqueous alteration. Parent body processing also appears to remove ether bonds from organic material and alkyl side chains from its constituent units. The iron in Antarctic chondrites is generally more oxidized than that in their non‐Antarctic counterparts, reflecting terrestrial weathering. Antarctic weathering of chondritic organic matter appears to proceed in a similar way to parent body aqueous alteration and simply enhances the organic responses observed in the non‐Antarctic data set. Degradation of the record of preterrestrial processes in Antarctic chondrites should be taken into account when interpreting data from these meteorites.  相似文献   

20.
The existence of mass‐independent chromium isotope variability of nucleosynthetic origin in meteorites and their components provides a means to investigate potential genetic relationship between meteorites and planetary bodies. Moreover, chromium abundances are depleted in most surficial terrestrial rocks relative to chondrites such that Cr isotopes are a powerful tool to detect the contribution of various types of extra‐terrestrial material in terrestrial impactites. This approach can thus be used to constrain the nature of the bolide resulting in breccia and melt rocks in terrestrial impact structures. Here, we report the Cr isotope composition of impact rocks from the ~0.57 Ma Lonar crater (India), which is the best‐preserved impact structure excavated in basaltic target rocks. Results confirm the presence of a chondritic component in several bulk rock samples of up to 3%. The impactor that created the Lonar crater had a composition that was most likely similar to that of carbonaceous chondrites, possibly a CM‐type chondrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号