首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

2.
Abstract— Three‐dimensional structures and elemental abundances of four impact tracks in silica aerogel keystones of Stardust samples from comet 81P/Wild 2 (bulbous track 67 and carrot‐type tracks 46, 47, and 68) were examined non‐destructively by synchrotron radiation‐based microtomography and X‐ray fluorescence analysis. Track features, such as lengths, volumes and width as a function of track depth, were obtained quantitatively by tomography. A bulbous portion was present near the track entrance even in carrot‐type tracks. Each impact of a cometary dust particle results in the particle disaggregated into small pieces that were widely distributed on the track walls as well as at its terminal. Fe, S, Ca, Ni, and eight minor elements are concentrated in the bulbous portion of track 68 as well as in terminal grains. It was confirmed that bulbous portions and thin tracks were formed by disaggregation of very fine fragile materials and relatively coarse crystalline particles, respectively. The almost constant ratio of whole Fe mass to track volume indicates that the track volume is almost proportional to the impact kinetic energy. The size of the original impactor was estimated from the absolute Fe mass by assuming its Fe content (CI) and bulk density. Relations between the track sizes normalized by the impactor size and impact conditions are roughly consistent with those of previous hypervelocity impact experiments.  相似文献   

3.
Abstract– Impacts of small particles of soda‐lime glass and glycine onto low density aerogel are reported. The aerogel had a quality similar to the flight aerogels carried by the NASA Stardust mission that collected cometary dust during a flyby of comet 81P/Wild 2 in 2004. The types of track formed in the aerogel by the impacts of the soda‐lime glass and glycine are shown to be different, both qualitatively and quantitatively. For example, the soda‐lime glass tracks have a carrot‐like appearance and are relatively long and slender (width to length ratio <0.11), whereas the glycine tracks consist of bulbous cavities (width to length ratio >0.26). In consequence, the glycine particles would be underestimated in diameter by a factor of 1.7–3.2, if the glycine tracks were analyzed using the soda‐lime glass calibration and density. This implies that a single calibration for impacting particle size based on track properties, as previously used by Stardust to obtain cometary dust particle size, is inappropriate.  相似文献   

4.
Abstract– The Stardust mission captured comet Wild 2 particles in aerogel at 6.1 km s?1. We performed high‐resolution three‐dimensional imaging and X‐ray fluorescence mapping of whole cometary tracks in aerogel. We present the results of a survey of track structures using laser scanning confocal microscopy, including measurements of track volumes, entry hole size, and cross‐sectional profiles. We compare various methods for measuring track parameters. We demonstrate a methodology for discerning hypervelocity particle ablation rates using synchrotron‐based X‐ray fluorescence, combined with mass and volume estimates of original impactors derived from measured track properties. Finally, we present a rough framework for reconstruction of original impactor size, and volume of volatilized material, using our measured parameters. The bulk of this work is in direct support of nondestructive analysis and identification of cometary grains in whole tracks, and its eventual application to the reconstruction of the size, shape, porosity, and chemical composition of whole Stardust impactors.  相似文献   

5.
Abstract— New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm?3 (similar to soda‐lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by μm‐scale and smaller sub‐grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse finegrained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.  相似文献   

6.
Abstract– We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on “carrot” and “bulbous” tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg‐rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O‐rich forsteritic grain that may have formed in a similar environment as Ca‐, Al‐rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron‐sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.  相似文献   

7.
NASA’s Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10−15 to ∼10−4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca–Al inclusions in primitive meteorites. Minor mineral phases, including Cu–Fe-sulfide, Fe–Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 μm). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant depletion from the CI values and the moderately volatile elements Cu, Zn, Ga are enriched relative to CI. This elemental abundance pattern is similar to that in anhydrous, porous interplanetary dust particles (IDPs), suggesting that, if Wild 2 dust preserves the original composition of the Solar Nebula, the anhydrous, porous IDPs, not the CI meteorites, may best reflect the Solar Nebula abundances. This might be tested by elemental composition measurements on cometary meteors.  相似文献   

8.
Abstract– The successful return of the Stardust spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from comet 81P/Wild 2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two‐step laser mass spectrometry demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N rich. Spectral analysis in combination with instrumental detection sensitivies suggest that N is incorporated predominantly in the form of aromatic nitriles (R–C≡N). While organic species in the Stardust samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N containing species in comets has astrobiological implications as comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars.  相似文献   

9.
Aluminum foils from the Stardust cometary dust collector contain impact craters formed during the spacecraft's encounter with comet 81P/Wild 2 and retain residues that are among the few unambiguously cometary samples available for laboratory study. Our study investigates four micron‐scale (1.8–5.2 μm) and six submicron (220–380 nm) diameter craters to better characterize the fine (<1 μm) component of comet Wild 2. We perform initial crater identification with scanning electron microscopy, prepare the samples for further analysis with a focused ion beam, and analyze the cross sections of the impact craters with transmission electron microscopy (TEM). All of the craters are dominated by combinations of silicate and iron sulfide residues. Two micron‐scale craters had subregions that are consistent with spinel and taenite impactors, indicating that the micron‐scale craters have a refractory component. Four submicron craters contained amorphous residue layers composed of silicate and sulfide impactors. The lack of refractory materials in the submicron craters suggests that refractory material abundances may differentiate Wild 2 dust on the scale of several hundred nanometers from larger particles on the scale of a micron. The submicron craters are enriched in moderately volatile elements (S, Zn) when normalized to Si and CI chondrite abundances, suggesting that, if these craters are representative of the Wild 2 fine component, the Wild 2 fines were not formed by high‐temperature condensation. This distinguishes the comet's fine component from the large terminal particles in Stardust aerogel tracks which mostly formed in high‐temperature events.  相似文献   

10.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

11.
Dust from comet 81P/Wild 2 was captured at high speed in silica aerogel collectors during the Stardust mission. Studies of deceleration tracks in aerogel showed that a number of cometary particles were poorly cohesive and fragmented during impact. Fragments are now scattered along the walls of impact cavities. Here, we report a transmission electron microscope study of a piece of aerogel extracted from the wall of track 10. We focused on micron‐sized secondary tracks along which fragments of a fine‐grained material are disseminated. Two populations of fragments were identified. The first is made of polycrystalline silicate assemblages (olivine, pyroxene, and spinel) that appear to be chemically related to each other. The second corresponds to silica‐rich glassy clumps characteristic of a mixture of melted cometary material and aerogel. A significant number of fragments have been found with a composition close to chondritic CI for the major elements Fe‐Mg‐S at a submicron scale. These fragments have thus never been chemically differentiated by high‐temperature processes prior to the accretion on the comet, in contrast to terminal particles, which are dominated by larger, denser, and frequently monomineralic components.  相似文献   

12.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   

13.
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about 1 μm. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the −2.6 to −3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.  相似文献   

14.
Abstract– Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s?1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al‐free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.  相似文献   

15.
Cover          下载免费PDF全文
Cover: Light microscope image of 950 μm‐long Stardust track, C2045,4,178,0,0 (#178), of cometary grains captured in aerogel at 6.1 kms‐1. Hicks et al. discuss the identifi cation of magnetite in this and other Stardust tracks. The magnetite is interpreted to have formed through water‐rock reaction on the comet Wild 2 parent body. Scale bar = 200 μm. Image courtesy of L. Hicks.  相似文献   

16.
Helium and neon distributions are reported for a variety of Stardust comet 81P/Wild 2 samples, including particle tracks and terminal particles, cell surface and subsurface slices from the comet coma and interstellar particle collection trays, and numerous small aerogel blocks extracted from comet cells C2044 and C2086. Discussions and conclusions in several abstracts published during the course of the investigation are included, along with the relevant data. Measured isotope ratios span a broad range, implying a similar range for noble gas carriers in the Wild 2 coma. The meteoritic phase Q‐20Ne/22Ne ratio was observed in several samples. Some of these, and others, exhibit 21Ne excesses too large for attribution to spallation by galactic cosmic ray irradiation, suggesting exposure to a solar proton flux greatly enhanced above current levels in an early near‐Sun environment. Still others display evidence for a solar wind component, particularly one C2086 block with large abundances of isotopically solar‐like helium and neon. Eighty‐nine small aerogel samples were cut from depths up to several millimeters below the cell C2044 surface and several millimeters away from the axis of major track T41. A fraction of these yielded measurable and variable helium and neon abundances and isotope ratios, although none contained visible tracks or carrier particle fragments and their locations were beyond estimated penetration ranges for small particles or ions incident on the cell surface, or for lateral ejecta from T41. Finding plausible emplacement mechanisms and sources for these gases is a significant challenge raised by this study.  相似文献   

17.
Abstract– The grains returned by NASA’s Stardust mission from comet 81P/Wild 2 represent a valuable sample set that is significantly advancing our understanding of small solar system bodies. However, the grains were captured via impact at ~6.1 km s?1 and have experienced pressures and temperatures that caused alteration. To ensure correct interpretations of comet 81P/Wild 2 mineralogy, and therefore preaccretional or parent body processes, an understanding of the effects of capture is required. Using a two‐stage light‐gas gun, we recreated Stardust encounter conditions and generated a series of impact analogs for a range of minerals of cometary relevance into flight spare Al foils. Through analyses of both preimpact projectiles and postimpact analogs by transmission electron microscopy, we explore the impact processes occurring during capture and distinguish between those materials inherent to the impactor and those that are the product of capture. We review existing and present additional data on olivine, diopside, pyrrhotite, and pentlandite. We find that surviving crystalline material is observed in most single grain impactor residues. However, none is found in that of a relatively monodisperse aggregate. A variety of impact‐generated components are observed in all samples. Al incorporation into melt‐derived phases allows differentiation between melt and shock‐induced phases. In single grain impactor residues, impact‐generated phases largely retain original (nonvolatile) major element ratios. We conclude that both surviving and impact‐generated phases in residues of single grain impactors provide valuable information regarding the mineralogy of the impacting grain whilst further studies are required to fully understand aggregate impacts and the role of subgrain interactions during impact.  相似文献   

18.
Abstract— The known encounter velocity (6.1 kms?1) and particle incidence angle (perpendicular) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild‐2 fall within a range that allows simulation in laboratory light‐gas gun (LGG) experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminum foil components of the Stardust collector. Buckshot of a wide size, shape, and density range of mineral, glass, polymer, and metal grains, have been fired to impact perpendicularly on samples of Stardust Al 1100 foil, tightly wrapped onto aluminum alloy plate as an analogue of foil on the spacecraft collector. We have not yet been able to produce laboratory impacts by projectiles with weak and porous aggregate structure, as may occur in some cometary dust grains. In this report we present information on crater gross morphology and its dependence on particle size and density, the pre‐existing major‐ and trace‐element composition of the foil, geometrical issues for energy dispersive X‐ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density, and composition for particles impacted on the Stardust aluminum foils.  相似文献   

19.
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least.  相似文献   

20.
Abstract— Metallic aluminum alloy foils exposed on the forward, comet‐facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminum alloy to record hypervelocity impacts as bowl‐shaped craters offers an opportunistic substrate for recognition of impacts by particles of a potentially wide size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild‐2, with a known and constant spacecraft‐particle relative velocity and effective surface‐perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration program, we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well‐documented particle size range from 10 μm to nearly 100 μm. Light gas gun buckshot firings of these particles at approximately 6 km s?1 onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild‐2, independent of the active impact detector instruments aboard the Stardust spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号