首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-conjugate adaptive optics(MCAO),consisting of several deformable mirrors(DMs),can significantly increase the adaptive optics(AO)correction field of view.Current MCAO can be realized by either star-oriented or layer-oriented approaches.For solar AO,ground-layer adaptive optics(GLAO)can be viewed as an extreme case of layer-oriented MCAO in which the DM is conjugated to the ground,while solar tomography adaptive optics(TAO)that we proposed recently can be viewed as star-oriented MCAO with only one DM.Solar GLAO and TAO use the same hardware as conventional solar AO,and therefore it will be important to see which method can deliver better performance.In this article,we compare the performance of solar GLAO and TAO by using end-to-end numerical simulation software.Numerical simulations of TAO and GLAO with different numbers of guide stars are conducted.Our results show that TAO and GLAO produce the same performance if the DM is conjugated to the ground,but TAO can only generate better performance when the DM is conjugated to the best height.This result has important application in existing one-DM solar AO systems.  相似文献   

2.
Integral field spectrographs are major instruments with which to study the mechanisms involved in the formation and the evolution of early galaxies. When combined with multi-object spectroscopy, those spectrographs can behave as machines used to derive physical parameters of galaxies during their formation process. Up to now, there has been only one available spectrograph with multiple integral field units, i.e. FLAMES/GIRAFFE on the European Southern Observatory (ESO) Very Large Telescope (VLT). However, current ground-based instruments suffer from a degradation of their spatial resolution due to atmospheric turbulence. In this article we describe the performance of FALCON, an original concept of a new-generation multi-object integral field spectrograph with adaptive optics for the ESO VLT. The goal of FALCON is to combine high angular resolution (0.25 arcsec) and high spectral resolution  ( R > 5000)  in the J and H bands over a wide field of view  (10 × 10 arcmin2)  in the VLT Nasmyth focal plane. However, instead of correcting the whole field, FALCON will use multi-object adaptive optics (MOAO) to perform the adaptive optics correction locally on each scientific target. This requires us then to use atmospheric tomography in order to use suitable natural guide stars for wavefront sensing. We will show that merging MOAO and atmospheric tomography allows us to determine the internal kinematics of distant galaxies up to z ≈ 2 with a sky coverage of 50 per cent, even for objects observed near the Galactic pole. The application of such a concept to extremely large telescopes seems therefore to be a very promising way to study galaxy evolution from z = 1 to redshifts as high as z = 7.  相似文献   

3.
New challenges for adaptive optics: extremely large telescopes   总被引:1,自引:0,他引:1  
The performance of an adaptive optics (AO) system on a 100-m diameter ground-based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60 per cent is achieved at 0.5 μm with a limiting magnitude of the AO guide source near R   magnitude~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use three or four reference sources and up to three deformable mirrors, which increase up to 8-fold the corrected field size (up to 60 arcsec at 0.5 μm). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50 per cent with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint ( R ~22) NGS for low-order correction, which results in a sky coverage of 40 per cent at the Galactic poles in the visible.  相似文献   

4.
A method for producing a laser guide star wavefront sensor for adaptive optics with reduced focal anisoplanatism is presented. A theoretical analysis and numerical simulations have been carried out and the results are presented. The technique, named Sky-Projected Laser Array Shack–Hartmann (SPLASH), is shown to suffer considerably less from focal anisoplanatism than a conventional laser guide star system. The method is potentially suitable for large telescope apertures (∼8 m), and possibly for extremely large telescopes.  相似文献   

5.
The point spread function of a segmented-mirror telescope is severely affected by segment misalignment, which can nullify the performance of adaptive optics systems. The piston and tilt of each segment must be precisely adjusted in relation to the other segments. Furthermore, the direct detection of the alignment error with natural stars would be desirable in order to monitor the errors during astronomical observation.
We have studied the lost information of the piston error caused by the presence of atmospheric turbulence in the measurements of curvature, and present a new algorithm for obtaining the local piston using the curvature sensor. A phase-wrapping effect is shown as responsible for the loss of curvature information and so the piston errors can no longer adequately be mapped; this happens not only in the presence of atmospheric turbulence, but also in its absence.
Good results are obtained using a new iterative method for obtaining the local piston error map. In the presence of atmospheric perturbation, the turbulent phase information obtained from a Shack–Hartmann sensor is introduced in our new iterative method. We propose a hybrid sensor composed of a curvature sensor and a Shack–Hartmann sensor, in order to complete all the information for the phasing. This design takes a short computation time and could be used in real time inside an adaptive optics system, where tilt and piston errors must be corrected.  相似文献   

6.
We describe a novel concept for high-resolution wavefront sensing based on the optical differentiation wavefront sensor (OD). It keeps the advantages of high resolution, adjustable dynamic range, ability to work with polychromatic sources and, in addition, it achieves good performance in wavefront reconstruction when the field is perturbed by scintillation. Moreover, this new concept can be used as multi-object wavefront sensor in multiconjugate adaptive optics systems. It is able to provide high resolution and high sampling operation, which is of great interest for the projected extreme adaptive optics systems for large telescopes.  相似文献   

7.
Sodium laser guide stars (LGSs) are elongated sources due to the thickness and the finite distance of the sodium layer. The fluctuations of the sodium layer altitude and atom density profile induce errors on centroid measurements of elongated spots, and generate spurious optical aberrations in closed-loop adaptive optics (AO) systems. According to an analytical model and experimental results obtained with the University of Victoria LGS bench demonstrator, one of the main origins of these aberrations, referred to as LGS aberrations, is not the centre-of-gravity (CoG) algorithm itself, but the thresholding applied on the pixels of the image prior to computing the spot centroids. A new thresholding method, termed 'radial thresholding', is presented here, cancelling out most of the LGS aberrations without altering the centroid measurement accuracy.  相似文献   

8.
We present a multicolour catalogue of faint galaxies situated close to bright stars,   V ≲ 15  , with the aim of identifying high-redshift galaxies suitable for study with adaptive optics-equipped near-infrared imagers and spectrographs. The catalogue is constructed from archival calibration observations of the United Kingdom Infrared Telescope (UKIRT) Faint Standard stars with the UKIRT Fast Track Imager (UFTI) camera on UKIRT. We have analysed the deepest 16 fields from the archive to provide a catalogue of galaxies brighter than   K ∼ 20.3  lying between 3 and 25 arcsec of the guide stars. We identify 111 objects in a total survey area of  8.7 arcmin2  . Of these, 87 are classified as galaxies based on their light profiles in our ∼0.5 arcsec median seeing K -band images. 12 of the galaxies have  ( J − K ) ≥ 2.0  consistent with them lying at high redshifts,   z ≳ 2  . These 12 very red galaxies have K -band magnitudes of   K = 18.1–20.1  and separations from the guide stars of 4–20 arcsec and hence are very well suited to adaptive optics studies to investigate their morphologies and spectral properties on sub-kpc scales. We provide coordinates and JHK photometry for all catalogued objects.  相似文献   

9.
We propose a high-contrast coronagraph for direct imaging of young Jupiter-like planets orbiting nearby bright stars. The coronagraph employs a steptransmission filter in which the intensity is apodized with a finite number of steps with identical transmission in each step. It should be installed on a large ground-based telescope equipped with a state-of-the-art adaptive optics system. In this case, contrast ratios around 10-6 should be accessible within 0.1 arcsec of the central star. In recent progress, a...  相似文献   

10.
11.
We introduce a novel concept to sense the wavefront for adaptive optics purposes in astronomy using a conventional laser beacon. The concept we describe involves treating the light scattered in the mesospheric sodium layer as if it comes from multiple rings located at infinity. Such a concept resembles an inverse Bessel beam and is particularly suitable for multi-conjugated adaptive optics on extremely large telescopes. In fact, as the sensing process uses light apparently coming from infinity, some problems linked to the finite distance and vertical extent of the guide source are solved. Since such a technique is able to sense a wavefront solely in the radial direction, we propose furthermore a novel wavefront sensor by combining the inverse Bessel beam approach with the recently introduced z -invariant technique for a pseudo-infinite guide star sensor.  相似文献   

12.
In this paper, the present status of the development of the design of the European Solar Telescope is described. The telescope is devised to have the best possible angular resolution and polarimetric performance, maximizing the throughput of the whole system. To that aim, adaptive optics and multi‐conjugate adaptive optics are integrated in the optical path. The system will have the possibility to correct for the diurnal variation of the distance to the turbulence layers, by using several deformable mirrors, conjugated at different heights. The present optical design of the telescope distributes the optical elements along the optical path in such a way that the instrumental polarization induced by the telescope is minimized and independent of the solar elevation and azimuth. This property represents a large advantage for polarimetric measurements. The ensemble of instruments that are planned is also presented (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This article describes the considerations which led to the current optical design of the new 1.5 m solar telescope GREGOR. The result is Gregorian design with two real foci in the optical train. The telescope includes a relay optic with a pupil image used by a high order adaptive optics system (AO). The optical design is described in detail and performance characteristics are given. Finally we show some verification results which prove that – without atmospheric effects – the completed telescope reaches a diffraction limited performance (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The integration and verification phase of the GREGOR telescope reached an important milestone with the installation of the interim 1 m SolarLite primary mirror. This was the first time that the entire light path had seen sunlight. Since then extensive testing of the telescope and its subsystems has been carried out. The integration and verification phase will culminate with the delivery and installation of the final 1.5 m Zerodur primary mirror in the summer of 2010. Observatory level tests and science verification will commence in the second half of 2010 and in 2011. This phase includes testing of the main optics, adaptive optics, cooling and pointing systems. In addition, assuming the viewpoint of a typical user, various observational modes of the GREGOR Fabry‐Pérot Interferometer (GFPI), the Grating Infrared Spectrograph (GRIS), and high‐speed camera systems will be tested to evaluate if they match the expectations and science requirements. This ensures that GREGOR will provide high‐quality observations with its combination of (multi‐conjugate) adaptive optics and advanced post‐focus instruments. Routine observations are expected for 2012 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
16.
The scientific exploitation of adaptive optics (AO) with natural guide stars is severely constrained by the limited presence of bright guide stars for wavefront sensing. Use of a laser beam as an alternative means to provide a source for wavefront sensing has the potential of drastically improving the sky coverage for AO. For this reason at the 4.2-m William Herschel Telescope a project was started to develop a Rayleigh laser beacon to work together with the existing NAOMI adaptive optics instrumentation and the OASIS integral field spectrograph. This paper presents the rationale for this development, highlights some of the technical aspects, and gives some expected performance measures.  相似文献   

17.
Near‐Infrared high spectral and spatial resolution spectroscopy offers new and innovative observing opportunities for astronomy. The “traditional” benefits of IR‐astronomy – strongly reduced extinction and availability of adaptive optics – more than offset for many applications the compared to CCD‐based astronomy strongly reduced sensitivity. Especially in high resolution spectroscopy interferences by telluric lines can be minimized. Moreover for abundance studies many important atomic lines can be accessed in the NIR. A novel spectral feature available for quantitative spectroscopy are the molecular rotational‐vibrational transitions which allow for fundamentally new studies of condensed objects and atmospheres. This is also an important complement to radio‐astronomy, especially with ALMA, where molecules are generally only observed in the vibrational ground state. Rot‐vib transitions also allow high precision abundance measurements – including isotopic ratios – fundamental to understand the thermo‐nuclear processes in stars beyond the main sequence. Quantitative modeling of atmospheres has progressed such that the unambiguous interpretation of IR‐spectra is now well established. In combination with adaptive optics spectro‐astrometry is even more powerful and with VLT‐CRIRES a spatial resolution of better than one milli‐arcsecond has been demonstrated. Some highlights and recent results will be presented: our solar system, extrasolar planets, star‐ and planet formation, stellar evolution and the formation of galactic bulges (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The GraF instrument using a Fabry-Perot interferometer cross-dispersed with a grating was one of the first integral-field and long-slit spectrographs built for and used with an adaptive optics system. We describe its concept, design, optimal observational procedures and the measured performances. The instrument was used in 1997–2001 at the ESO3.6 m telescope equipped with ADONIS adaptive optics and SHARPII+camera. The operating spectral range was 1.2–2.5 μm. We used the spectral resolution from 500 to 10 000 combined with the angular resolution of 0.1″–0.2″. The quality of GraF data is illustrated by the integral field spectroscopy of the complex0.9″ × 0.9″ central region of η Car in the1.7 μm spectral range at the limit of spectral and angular resolutions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
基于激光信标发射和接收共光路系统中探测器受杂散光影响的关键问题,设计了一种新型转盘式机械快门装置,对光信号进行高频率开关控制,从而对自适应光学系统的波前探测器起到彻底保护作用.设计时,分析了瑞利信标的采样厚度以及快门开关与脉冲激光器的发射、探测器探测时间的时序控制.  相似文献   

20.
The fields of view of Extremely Large Telescopes will contain vast numbers of spatial sampling elements (spaxels) as their adaptive optics systems approach the diffraction limit over wide fields. Since this will exceed the detection capabilities of any realistic instrument, the field must be dilutely sampled to extract spectroscopic data from selected regions of interest. The scientific return will be maximized if the sampling pattern provides an adaptable combination of separated independent spaxels and larger contiguous subfields, seamlessly combining integral-field and multiple-object spectroscopy. We illustrate the utility of this diverse-field spectroscopy (DFS) to cosmological studies of galaxy assembly. We show how to implement DFS with an instrument concept: the Celestial Selector. This integrates highly multiplexed monolithic fibre systems and switching networks of the type currently available in the telecommunications industry. It avoids bulky moving parts, whose limitations were noted in Paper I. In Paper III, we will investigate the optimization of such systems by varying the input–output mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号