首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Our knowledge of the presence and the strength of magnetic fields in intermediate‐mass pre‐main‐sequence stars remains very poor. We present new magnetic field measurements in six Herbig Ae/Be stars observed with HARPS in spectropolarimetric mode. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for six Herbig Ae/Be stars. Wavelength shifts between right‐ and left‐hand side circularly polarised spectra were interpreted in terms of a longitudinal magnetic field 〈Bz〉, using the moment technique introduced by Mathys. The application of the moment technique to the HARPS spectra allowed us in addition to study the presence of the crossover effect and quadratic magnetic fields. Our search for longitudinal magnetic fields resulted in first detections of weak magnetic fields in the Herbig Ae/Be stars HD 58647 and HD 98922. Further, we confirm the previous tentative detection of a weak magnetic field in HD 104237 by Donati et al. and confirm the previous detection of a magnetic field in the Herbig Ae star HD 190073. Surprisingly, the measured longitudinal magnetic field of HD 190073, 〈Bz〉 = 91 ± 18 G at a significance level of 5σ is not in agreement with the measurement results of Alecian et al. (2013), 〈Bz〉 = –10 ± 20 G, who applied the LSD method to exactly the same data. No crossover effect was detected for any star in the sample. Only for HD 98922 the crossover effect was found tobe close to 3σ with a measured value of –4228 ± 1443 km s–1 G. A quadratic magnetic field of the order of 10 kG was detected in HD 98922, and of ∼3.5 kG in HD 104237. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We investigated the horizontal and the vertical component of the Evershed flow (EF). To this end, we computed average Stokes V profiles for various velocity classes in penumbrae at different heliocentric angles. Our results show that for blueshifted profiles an additional lobe with the same polarity as the spot is present in the blue side of the average Stokes V profile. The amplitude of the additional lobe grows with increasing blueshift and with increasing heliocentric angle. For small redshifts, the profiles show an additional lobe with the opposite polarity as the spot on the red side of the average Stokes V profile. Even at disk center, the original polarity of the average Stokes V profile is reversed for strong redshifts. The transition between the different types of Stokes V profiles is continuous and indicates that not only the vertical, but also the horizontal EF is a magnetized stream of plasma in a magnetic background field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We report the results of our search for magnetic fields in a sample of 16 field Be stars, the binary emission‐line B‐type star υ Sgr, and in a sample of fourteen members of the open young cluster NGC3766 in the Carina spiral arm. The sample of cluster members includes Be stars, normal B‐type stars and He‐strong/He‐weak stars. Nine Be stars have been studied with magnetic field time series obtained over ∼1 hour to get an insight into the temporal behaviour and the correlation of magnetic field properties with dynamical phenomena taking place in Be star atmospheres. The spectropolarimetric data were obtained at the European Southern Observatory with the multi‐mode instrument FORS1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four field Be stars, HD 62367, μ Cen, o Aqr, and ε Tuc. The strongest longitudinal magnetic field, 〈Bz〉 = 117 ± 38 G, was detected in the Be star HD 62367. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min. The binary star υ Sgr, in the initial rapid phase of mass exchange between the two components with strong emission lines in the visible spectrum, is a magnetic variable star, probably on a timescale of a few months. The maximum longitudinal magnetic field 〈Bz〉 = –102 ± 10 G at MJD 54333.018 was measured using hydrogen lines. The cluster NGC3766 seems to be extremely interesting, where we find evidence for the presence of a magnetic field in seven early B‐type stars out of the observed fourteen cluster members (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
New and existing photometry for the G0 Ia supergiant HD 18391 is analyzed in order to confirm the nature of the variability previously detected in the star, which lies off the hot edge of the Cepheid instability strip. Small‐amplitude variability at a level of δV = 0.016 ± 0.002 is indicated, with a period of P = 123d.04 ± 0d.06. A weaker second signal may be present at P = 177d.84 ± 0d.18 with δV = 0.007 ± 0.002, likely corresponding to fundamental mode pulsation if the primary signal represents overtone pulsation (123.04/177.84 = 0.69). The star, with a spectroscopic reddening of EB–V = 1.02 ± 0.003, is associated with heavily‐reddened B‐type stars in its immediate vicinity that appear to be outlying members of an anonymous young cluster centered ∼10′ to the west and 1661 ± 73 pc distant. The cluster has nuclear and coronal radii of rn = 3.5′ and Rc = 14′, respectively, while the parameters for HD 18391 derived from membership in the cluster with its outlying B stars are consistent with those implied by its Cepheid‐like pulsation, provided that it follows the semi‐period‐luminosity relation expected of such objects. Its inferred luminosity as a cluster member is MV = –7.76 ± 0.10, its age (9 ± 1) × 106 years, and its evolutionary mass ∼19 M. HD 18391 is not a classical Cepheid, yet it follows the Cepheid period‐luminosity relation closely, much like another Cepheid impostor, V810 Cen (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The period of light variationP=1 . d 13316 has been found for the silicon B9 IVp star HD 193722. Spectroscopic study of this star was based on 35 spectrograms with dispersion 4 Å mm–1 well distributed in phase. The measurements of radial velocities of spectral line components for SiII, HeI, EuII, FeII and SrII allowed us to localize several regions on the surface of the star with enhanced abundance of these elements. The phase of maximum light inU, B andV was found to be the same as the phase of maximum Eu abundance. The coincidence of the regions with larger abundance of Si and He in HD 193 722 disagree with the hypothesis of diffusion in the presence of a magnetic field developed by Michaud (1971), to explain the peculiar chemical composition of Ap-stars.HD 193722 is a silicon B9 IVp star for which the magnetic field has not been measured. In the list by Palmeret al. (1962) its rotational velocityV sini is given as 250 kms–1. As will be seen below, this value is too high. Megessier (1971) determined from hydrogen line profiles and continuous spectrumT eff=13 000° and lgg=3.5.The results of photometric and spectroscopic study of HD193722 are given below.  相似文献   

7.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We report on our follow‐up spectroscopy of HD 1071478 B, a recently detected faint co‐moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35″ (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co‐moving companion, we obtained follow‐up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56 ± 0.05 M, a luminosity of (2.0 ± 0.2) × 10–4 L, log g [cm s–2]) = 7.95 ± 0.09, and a cooling age of 2100 ± 270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Using polarimetric spectra obtained with the SOFIN spectrograph installed at the Nordic Optical Telescope, we detect a longitudinal magnetic field 〈Bz〉 = –168±35 G in the Of?p star HD 108. This result is in agreement with the longitudinal magnetic field measurement of the order of –150 G recently reported by the MiMeS team. The measurement of the longitudinal magnetic field in the Of?p star HD 191612 results in 〈Bz〉 = +450±153 G. The only previously published magnetic field measurement for this star showed a negative longitudinal magnetic field 〈Bz〉 = –220±38 G, indicating a change of polarity over ∼100 days. Further, we report the detection of distinct Zeeman features in the narrow Ca II and Na I doublet lines for both Of?p stars, hinting at the possible presence of material around these stars. The origin of these features is not yet clear and more work is needed to investigate how magnetic fields interact with stellar wind dynamics (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD 37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping [1], has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right-and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N≥200 [2]. The profile width of winged spectral lines (reaching 5 Å) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, O II, Al III, Si III, and Fe III averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30°<i<50°, β=40°, and a maximum surface field strength H s=60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum tangential field.  相似文献   

11.
We present the analysis of 20 years of time‐series BV photometry of the SB1 RS CVn binary HD 89546. The system's yearly mean V brightness, the BV color index, the photometric period, and the light curve amplitude all show clear cyclic variability with an ≈9‐year time scale. We also find some evidence for brightness variability on a time scale longer than the 20‐year time span of our observations, perhaps indicating a longer cycle analogous to the solar Gleissberg cycle. We estimate the unspotted V magnitude of HD 89546 to be 7.m154, which is ≈0.m2 brighter than the observed maximum brightness. Spot modelling of the system shows that spot temperature variations affect the observed BV color as well as the V brightness. Two active longitudes are observed, centered around 180° and 360° longitude on the G9 III primary, each covering a longitude range of 120°. Furthermore, two inactive longitude zones are seen spanning only 60° between the two active longitudes. The longitudinal distribution of the spots exhibits no strong cyclic variability but does show rapid jumps of 120° that look like the flip‐flop phenomenon. We estimate the differential rotation coefficient of the star as k = 0.086 by considering the range of observed photometric period variations and assumed latitudinal spot variations over 45° (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Low frequency oscillation, typical for γ Doradus g‐mode type stellar core sensitive pulsation, as well as higher frequency δ Scuti type pulsation typical for p ‐modes, sensitive to the envelope, make HD 8801 a remarkable hybrid pulsator with the potential to probe a stellar structure over a wide range of radius. In addition HD 8801 is a rare pulsating metallic line (Am) star. We determined the astro‐physical fundamental parameters to locate HD 8801 in the H‐R diagram. We analyzed the element abundances, paying close attention to the errors involved, and confirm the nature of HD 8801 as a metallic line (Am) star. We also determined an upper limit on the magnetic field strength. Our abundance analysis is based on classical techniques, but uses for the final step a model atmosphere calculated with the abundances determined by us. We also discuss spectropolarimetric observations obtained for HD 8801. This object is remarkable in several respects. It is a nonmagnetic metallic line (Am) star, pulsating simultaneously in p‐ and g‐modes, but also shows oscillations with periods in between these two domains, whose excitation requires explanation. Overall, the pulsational incidence in unevolved classical Am stars is believed to be quite low; HD 8801 does not conform to this picture. Finally, about 75 % of Am stars are located in short‐period binaries, but there is no evidence that HD 8801 has a companion. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Two‐dimensional spectrograms were obtained with the Vacuum Tower Telescope, Tenerife, in order to study small‐scale structures and faculae on the Sun. Using the speckle reconstruction method, we obtain high‐resolution images and wavelength scans. Magnetic fields can be studied from Stokes V profiles, and velocity maps are gained by the Doppler shift of the center of gravity of Stokes I. Here some results about small‐scale structures and their magnetic fields are shown.  相似文献   

14.
Kupke  Renate  Labonte  B.J.  Mickey  D.L. 《Solar physics》2000,191(1):97-128
Time series of 2-dimensional spectro-polarmetric data were obtained with the intent of studying the temporal behavior of velocity, magnetic flux, and characteristics of the Stokes V profile in a small region of a larger sunspot. Full Stokes profiles in I, Q, U, and V were obtained. Velocity oscillations were found at frequencies of 3.3 mHz in each of the profiles. Acoustic power maps indicate that locations of highest power correspond to areas in which the polarization signal was greatest, therefore no conclusion about the type of wave mode participating in the oscillations can be made. Velocity amplitudes were I: 71 m s–1, Q: 47 m s–1, U: 65 m s–1 and V: 86 m s–1. Oscillatory behavior was also detected in longitudinal field strength, with an r.m.s. amplitude of 22 G, at 2.6 and 3.3 mHz. The power was localized at the umbral/penumbral boundary. A phase analysis indicates a –130° phase difference with Stokes V velocity oscillations at 3.3 mHz and a 75° difference at 2.6 mHz. Results are consistent with magnetic field lines swaying in response to a p-mode driver. No oscillatory behavior was seen in Stokes V asymmetry or amplitude splitting.  相似文献   

15.
We investigate the thermodynamical and magnetic properties of a “dark‐cored” fibril seen in the chromospheric Ca II IR line at 854.2 nm to determine the physical process behind its appearance. We analyse a time series of spectropolarimetric observations obtained in the Ca II IR line at 854.2 nm and the photospheric Fe I line at 630.25 nm. We simultaneously invert the spectra in both wavelength ranges with the SIR code to obtain the temperature and velocity stratification with height in the solar atmosphere and the magnetic field properties in the photosphere. The structure can be clearly traced in the line‐of‐sight (LOS) velocity and the temperature maps. It connects from a small pore with kG fields to a region with lower field strength. The flow velocity and the temperature indicate that the height of the structure increases with increasing distance from the inner footpoint. The Stokes V signal of 854.2 nm shows a Doppler‐shifted polarization signal with the same displacement as in the intensity profile, indicating that the supersonic flow seen in the LOS velocity is located within magnetized plasma. We conclude that the chromospheric dark‐cored fibril traces a siphon flow along magnetic field lines, driven by the gas pressure difference caused by the higher magnetic field strength at the inner footpoint. We suggest that fast flows guided by the magnetic field lead to the appearance of “dark‐cored” fibrils in intensity images. Although the observations included the determination of the polarization signal in the chromospheric Ca II IR line, the signal could not be analysed quantitatively due to the low S/N. Chromospheric polarimetry will thus require telescopes of larger aperture able to collect a sufficient number of photons for a reliable determination of polarization in deep and only weakly polarized spectral lines (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In this paper we have studied in detail (numerically) the trajectories of charged particles in a magnetic field (dipolar at infinity) associated with a static star in the framework of Rosen's bimetric theory of gravity. It was found that there do exist potential wells that allow possible trapping of particles in stable orbits both on and off the equatorial plane. A particularly interesting feature that has shown up is the fact that the characteristics of the effective potential wellV eff depend on the ratio of the magnetic field strength parameter λ, and the angular momentumL of the charged particle. For values lower than a critical (λ/L) c the potential well lies within the regionr2m.  相似文献   

17.
We present the results of the continuation of our magnetic survey with FORS 1 at the VLT of a sample of B‐type stars consisting of confirmed or candidate β Cephei stars and Slowly Pulsating B (hereafter SPB) stars, along with a small number of normal B‐type stars. A weak mean longitudinal magnetic field of the order of a few hundred Gauss was detected in three β Cephei stars and two stars suspected to be β Cephei stars, in five SPB stars and eight stars suspected to be SPB stars. Additionally, a longitudinal magnetic field at a level larger than 3σ has been diagnosed in two normal B‐type stars, the nitrogen‐rich early B‐type star HD 52089 and in the B5 IV star HD 153716. Roughly one third of β Cephei stars have detected magnetic fields: Out of 13 β Cephei stars studied to date with FORS 1, four stars possess weak magnetic fields, and out of the sample of six suspected β Cephei stars two show a weak magnetic field. The fraction of magnetic SPBs and candidate SPBs is found to be higher: Roughly half of the 34 SPB stars have been found to be magnetic and among the 16 candidate SPBs eight stars possess magnetic fields. In an attempt to understand why only a fraction of pulsating stars exhibit magnetic fields, we studied the position of magnetic and non‐magnetic pulsating stars in the H‐R diagram. We find that their domains in the H‐R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence. It is possible that stronger fields tend to be found in stars with lower pulsating frequencies and smaller pulsating amplitudes. A somewhat similar trend is found if we consider a correlation between the field strength and the v sin i ‐values, i.e. stronger magnetic fields tend to be found in more slowly rotating stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Our recent search for the presence of a magnetic field in the bright early A‐type supergiant HD 92207 using FORS 2 in spectropolarimetric mode revealed the presence of a longitudinal magnetic field of the order of a few hundred Gauss. However, the definite confirmation of the magnetic nature of this object remained pending due to the detection of shortterm spectral variability probably affecting the position of line profiles in left‐ and right‐hand polarized spectra. We present new magnetic field measurements of HD 92207 obtained on three different epochs in 2013 and 2014 using FORS 2 in spectropolarimetric mode. A 3σ detection of the mean longitudinal magnetic field using the entire spectrum, 〈Bzall = 104 ± 34 G, was achieved in observations obtained in 2014 January. At this epoch, the position of the spectral lines appeared stable. Our analysis of spectral line shapes recorded in opposite circularly polarized light, i.e. in light with opposite sense of rotation, reveals that line profiles in the light polarized in a certain direction appear slightly split. The mechanism causing such a behaviour in the circularly polarized light is currently unknown. Trying to settle the issue of short‐term variability, we searched for changes in the spectral line profiles on a time scale of 8–10 min using HARPS polarimetric spectra and on a time scale of 3–4 min using time series obtained with the CORALIE spectrograph. No significant variability was detected on these time scales during the epochs studied. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Steiner  Oskar 《Solar physics》2000,196(2):245-268
A magnetopause that separates two regimes of different flow, additional to the separation of a magnetic field from a field-free plasma, gives rise to the formation of asymmetric Stokes profiles. Using a simple two-layer model atmosphere, where one layer comprises a magnetic field, the other being field-free, it is shown by analytical derivation that a wide variety of Stokes V profiles can be produced, having amplitude asymmetries a in the range –a. These include two-humped V profiles, which have two lobes of equal sign. For the most simple models, the asymmetry depends on the ratio of continuum intensity to the Planck radiation intensity of the magnetic layer at the wavelength of the spectral line under consideration, and on the line depth. Two-humped profiles (|a|>1) require the temperature of the magnetic layer to surpass the temperature of the line-core forming region, implying a temperature inversion, so that the V profile is partially in emission. The confrontation of this formation scenario with properties of observed one-lobe profiles of quiet-Sun network regions is inconclusive due to insufficient spatial resolution and lack of a sufficient sample of simultaneously recorded Stokes spectral lines of varying line depths. It seems, however, to be in good agreement with the observed frequent occurrence of abnormal V profiles of the very strong Nai D 2 and D 2 spectral line. A possible observational verification for the present formation scenario of abnormal Stokes V profiles and a novel method of Stokes inversion are discussed.  相似文献   

20.
A model is constructed for the magnetic field of the star HD 187474, which has a very long axial rotation period P = 2345d. It turns out that the structure of the magnetic field is best described by a model of a displaced (Δα = 0.1) dipole inclined to the axis of rotation by an angle β = 24°. The star is inclined to the line of sight by an angle i = 86°. Because of the displaced dipole the magnitude of the magnetic field differs at the poles: Bp = +6300 and 11600 G. A Mercator map of the distribution of the magnetic field over the surface is obtained. The 7 slowly rotating CP stars studied thus far have an average angle β = 62°, which equals the average value for a random orientation of dipoles. __________ Translated from Astrofizika, Vol. 48, No. 4, pp. 575–583 (November 2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号