首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract— In order to investigate the distribution of 26A1 in chondrites, we measured aluminum‐magnesium systematics in four calcium‐aluminum‐rich inclusions (CAIs) and eleven aluminum‐rich chondrules from unequilibrated ordinary chondrites (UOCs). All four CAIs were found to contain radiogenic 26Mg (26Mg*) from the decay of 26A1. The inferred initial 26Al/27Al ratios for these objects ((26Al/27Al)0 ? 5 × 10?5) are indistinguishable from the (26Al/27Al)0 ratios found in most CAIs from carbonaceous chondrites. These observations, together with the similarities in mineralogy and oxygen isotopic compositions of the two sets of CAIs, imply that CAIs in UOCs and carbonaceous chondrites formed by similar processes from similar (or the same) isotopic reservoirs, or perhaps in a single location in the solar system. We also found 26Mg* in two of eleven aluminum‐rich chondrules. The (26Al/27Al)0 ratio inferred for both of these chondrules is ~1 × 10?5, clearly distinct from most CAIs but consistent with the values found in chondrules from type 3.0–3.1 UOCs and for aluminum‐rich chondrules from lightly metamorphosed carbonaceous chondrites (~0.5 × 10?5 to ~2 × 10?5). The consistency of the (26Al/27Al)0 ratios for CAIs and chondrules in primitive chondrites, independent of meteorite class, implies broad‐scale nebular homogeneity with respect to 26Al and indicates that the differences in initial ratios can be interpreted in terms of formation time. A timeline based on 26Al indicates that chondrules began to form 1 to 2 Ma after most CAIs formed, that accretion of meteorite parent bodies was essentially complete by 4 Ma after CAIs, and that metamorphism was essentially over in type 4 chondrite parent bodies by 5 to 6 Ma after CAIs formed. Type 6 chondrites apparently did not cool until more than 7 Ma after CAIs formed. This timeline is consistent with 26Al as a principal heat source for melting and metamorphism.  相似文献   

2.
Abstract— Petrographic, compositional, and isotopic characteristics were studied for three calcium‐aluminum‐rich inclusions (CAIs) and four plagioclase‐bearing chondrules (three of them Al‐rich) from the Axtell (CV3) chondrite. All seven objects have analogues in Allende (CV3) and other primitive chondrites, yet Axtell, like most other chondrites, contains a distinctive suite of CAIs and chondrules. In common with Allende CAIs, CAIs in Axtell exhibit initial 26Al/27Al ratios ((26Al/27Al)0) ranging from ~5 × 10?5 to <1.1 × 10?5, and plagioclase‐bearing chondrules have (26Al/27Al)0 ratios of ~3 × 10?6 and lower. One type‐A CAI has the characteristics of a FUN inclusion. The Al‐Mg data imply that the plagioclase‐bearing chondrules began to form >2 Ma after the first CAIs. As in other CV3 chondrites, some objects in Axtell show evidence of isotopic disturbance. Axtell has experienced only mild thermal metamorphism (<600 °C), probably not enough to disturb the Al‐Mg systematics. Its CAIs and chondrules have suffered extensive metasomatism, probably prior to final accretion. These data indicate that CAIs and chondrules in Axtell (and other meteorites) had an extended history of several million years before their incorporation into the Axtell parent body. These long time periods appear to require a mechanism in the early solar system to prevent CAIs and chondrules from falling into the Sun via gas drag for several million years before final accretion. We also examined the compositional relationships among the four plagioclase‐bearing chondrules (two with large anorthite laths and two barred‐olivine chondrules) and between the chondrules and CAIs. Three processes were examined: (1) igneous differentiation, (2) assimilation of a CAI by average nebular material, and (3) evaporation of volatile elements from average nebular material. We find no evidence that igneous differentiation played a role in producing the chondrule compositions, although the barred olivine compositions can be related by addition or subtraction of olivine. Methods (2) and (3) could have produced the composition of one chondrule, AXCH‐1471, but neither process explains the other compositions. Our study indicates that plagioclase‐bearing objects originated through a variety of processes.  相似文献   

3.
Abstract— In this paper, we review the mineralogy and chemistry of calcium‐aluminum‐rich inclusions (CAIs), chondrules, FeNi‐metal, and fine‐grained materials of the CR chondrite clan, including CR, CH, and the metal‐rich CB chondrites Queen Alexandra Range 94411, Hammadah al Hamra 237, Bencubbin, Gujba, and Weatherford. The members of the CR chondrite clan are among the most pristine early solar system materials, which largely escaped thermal processing in an asteroidal setting (Bencubbin, Weatherford, and Gujba may be exceptions) and provide important constraints on the solar nebula models. These constraints include (1) multiplicity of CAI formation; (2) formation of CAIs and chondrules in spatially separated nebular regions; (3) formation of CAIs in gaseous reservoir(s) having 16O‐rich isotopic compositions; chondrules appear to have formed in the presence of 16O‐poor nebular gas; (4) isolation of CAIs and chondrules from nebular gas at various ambient temperatures; (5) heterogeneous distribution of 26Al in the solar nebula; and (6) absence of matrix material in the regions of CAI and chondrule formation.  相似文献   

4.
Cosmochemists have relied on CI carbonaceous chondrites as proxies for chemical composition of the non-volatile elements in the solar system because these meteorites are fine-grained, chemically homogeneous, and have well-determined bulk compositions that agree with that of the solar photosphere, within uncertainties. Here we report the discovery of a calcium-aluminum-rich inclusion (CAI) in the Ivuna CI chondrite. CAIs are chemically highly fractionated compared to CI composition, consisting of refractory elements and having textures that either reflect condensation from nebular gas or melting in a nebular environment. The CAI we found is a compact type A CAI with typical 16O-rich oxygen. However, it shows no evidence of 26Al, which was present when most CAIs formed. Finding a CAI in a CI chondrite raises serious questions about whether CI chondrites are a reliable proxy for the bulk composition of the solar system. Too much CAI material would show up as mismatches between the CI composition and the composition of the solar photosphere. Although small amounts of refractory material have previously been identified in CI chondrites, this material is not abundant enough to significantly perturb the bulk compositions of CI chondrites. The agreement between the composition of the solar photosphere and CI chondrites allows no more than ~0.5 atom% of CAI-like material to have been added to CI chondrites. As the compositions of CI chondrites, carbonaceous asteroids, and the solar photosphere are better determined, we will be able to reduce the uncertainties in our estimates of the composition of the solar system.  相似文献   

5.
We review recent results on O‐ and Mg‐isotope compositions of refractory grains (corundum, hibonite) and calcium, aluminum‐rich inclusions (CAIs) from unequilibrated ordinary and carbonaceous chondrites. We show that these refractory objects originated in the presence of nebular gas enriched in 16O to varying degrees relative to the standard mean ocean water value: the Δ17OSMOW value ranges from approximately ?16‰ to ?35‰, and recorded heterogeneous distribution of 26Al in their formation region: the inferred (26Al/27Al)0 ranges from approximately 6.5 × 10?5 to <2 × 10?6. There is no correlation between O‐ and Mg‐isotope compositions of the refractory objects: 26Al‐rich and 26Al‐poor refractory objects have similar O‐isotope compositions. We suggest that 26Al was injected into the 26Al‐poor collapsing protosolar molecular cloud core, possibly by a wind from a neighboring massive star, and was later homogenized in the protoplanetary disk by radial mixing, possibly at the canonical value of 26Al/27Al ratio (approximately 5 × 10?5). The 26Al‐rich and 26Al‐poor refractory grains and inclusions represent different generations of refractory objects, which formed prior to and during the injection and homogenization of 26Al. Thus, the duration of formation of refractory grains and CAIs cannot be inferred from their 26Al‐26Mg systematics, and the canonical (26Al/27Al)0 does not represent the initial abundance of 26Al in the solar system; instead, it may or may not represent the average abundance of 26Al in the fully formed disk. The latter depends on the formation time of CAIs with the canonical 26Al/27Al ratio relative to the timing of complete delivery of stellar 26Al to the solar system, and the degree of its subsequent homogenization in the disk. The injection of material containing 26Al resulted in no observable changes in O‐isotope composition of the solar system. Instead, the variations in O‐isotope compositions between individual CAIs indicate that O‐isotope composition of the CAI‐forming region varied, because of coexisting of 16O‐rich and 16O‐poor nebular reservoirs (gaseous and/or solid) at the birth of the solar system, or because of rapid changes in the O‐isotope compositions of these reservoirs with time, e.g., due to CO self‐shielding in the disk.  相似文献   

6.
Abstract— The Rumuruti chondrites (R chondrites) constitute a new, well-established, chondrite group different from carbonaceous, ordinary, and enstatite chondrites. Most samples of this group are gas-rich regolith breccias showing the typical light/dark structure and consist of abundant fragments of various parent body lithologies embedded in a fine-grained, olivine-rich matrix. Most R chondrites contain the typical components of primitive chondrites including chondrules, chondrule and mineral fragments, sulfides, and rare calcium-aluminum-rich inclusions (CAIs). In Hughes 030, an interesting CAI consisting of abundant hibonite and spinel was found. Mg isotopic analyses revealed excess 26Mg in components of R chondrites for the first time. The hibonite grains with high Al/Mg values (∼1500 to 2600) show resolved 26Mg excess. The slope of the correlation line yields an initial 26Al/ 27Al = (1.4 ± 0.3) × 10−6, which is ∼40 times lower than the initial value measured in CAIs from primitive meteorites. The inferred difference in 26Al abundance implies a time difference of ∼4 million years for the closure of the Al-Mg system between CAIs from primitive chondrites and the Hughes 030 CAI. Based on mineralogy and the petrographic setting of the hibonite-rich CAI, it is suggested that 4 million years reflect the time interval between the formation of the CAI and the end of its secondary alteration. It is also suggested that most of this alteration may have occurred in the nebula (e.g. Zn- and Fe-incorporation in spinels). However, the CAI could not have survived in the nebula as a free floating object for a long period of time. Therefore, the possibility of storage in a precursor planetesimal for a few million years, resetting the magnesium-aluminum isotopic system, prior to impact brecciation, excavation, and accretion of the final R chondrite parent body cannot be ruled out.  相似文献   

7.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   

8.
Chondrites consist of three major components: refractory inclusions (Ca,Al‐rich inclusions [CAIs] and amoeboid olivine aggregates), chondrules, and matrix. Here, I summarize recent results on the mineralogy, petrology, oxygen, and aluminum‐magnesium isotope systematics of the chondritic components (mainly CAIs in carbonaceous chondrites) and their significance for understanding processes in the protoplanetary disk (PPD) and on chondrite parent asteroids. CAIs are the oldest solids originated in the solar system: their U‐corrected Pb‐Pb absolute age of 4567.3 ± 0.16 Ma is considered to represent time 0 of its evolution. CAIs formed by evaporation, condensation, and aggregation in a gas of approximately solar composition in a hot (ambient temperature >1300 K) disk region exposed to irradiation by solar energetic particles, probably near the protoSun; subsequently, some CAIs were melted in and outside their formation region during transient heating events of still unknown nature. In unmetamorphosed, type 2–3.0 chondrites, CAIs show large variations in the initial 26Al/27Al ratios, from <5 × 10–6 to ~5.25 × 10–5. These variations and the inferred low initial abundance of 60Fe in the PPD suggest late injection of 26Al by a wind from a nearby Wolf–Rayet star into the protosolar molecular cloud core prior to or during its collapse. Although there are multiple generations of CAIs characterized by distinct mineralogies, textures, and isotopic (O, Mg, Ca, Ti, Mo, etc.) compositions, the 26Al heterogeneity in the CAI‐forming region(s) precludes determining the duration of CAIs formation using 26Al‐26Mg systematics. The existence of multiple generations of CAIs and the observed differences in CAI abundances in carbonaceous and noncarbonaceous chondrites may indicate that CAIs were episodically formed and ejected by a disk wind from near the Sun to the outer solar system and then spiraled inward due to gas drag. In type 2–3.0 chondrites, most CAIs surrounded by Wark–Lovering rims have uniform Δ17O (= δ17O?0.52 × δ18O) of ~ ?24‰; however, there is a large range of Δ17O (from ~?40 to ~ ?5‰) among them, suggesting the coexistence of 16O‐rich (low Δ17O) and 16O‐poor (high Δ17O) gaseous reservoirs at the earliest stages of the PPD evolution. The observed variations in Δ17O of CAIs may be explained if three major O‐bearing species in the solar system (CO, H2O, and silicate dust) had different O‐isotope compositions, with H2O and possibly silicate dust being 16O‐depleted relative to both the Genesis solar wind Δ17O of ?28.4 ± 3.6‰ and even more 16O‐enriched CO. Oxygen isotopic compositions of CO and H2O could have resulted from CO self‐shielding in the protosolar molecular cloud (PMC) and the outer PPD. The nature of 16O‐depleted dust at the earliest stages of PPD evolution remains unclear: it could have either been inherited from the PMC or the initially 16O‐rich (solar‐like) MC dust experienced O‐isotope exchange during thermal processing in the PPD. To understand the chemical and isotopic composition of the protosolar MC material and the degree of its thermal processing in PPD, samples of the primordial silicates and ices, which may have survived in the outer solar system, are required. In metamorphosed CO3 and CV3 chondrites, most CAIs exhibit O‐isotope heterogeneity that often appears to be mineralogically controlled: anorthite, melilite, grossite, krotite, perovskite, and Zr‐ and Sc‐rich oxides and silicates are 16O‐depleted relative to corundum, hibonite, spinel, Al,Ti‐diopside, forsterite, and enstatite. In texturally fine‐grained CAIs with grain sizes of ~10–20 μm, this O‐isotope heterogeneity is most likely due to O‐isotope exchange with 16O‐poor (Δ17O ~0‰) aqueous fluids on the CO and CV chondrite parent asteroids. In CO3.1 and CV3.1 chondrites, this process did not affect Al‐Mg isotope systematics of CAIs. In some coarse‐grained igneous CV CAIs, O‐isotope heterogeneity of anorthite, melilite, and igneously zoned Al,Ti‐diopside appears to be consistent with their crystallization from melts of isotopically evolving O‐isotope compositions. These CAIs could have recorded O‐isotope exchange during incomplete melting in nebular gaseous reservoir(s) with different O‐isotope compositions and during aqueous fluid–rock interaction on the CV asteroid.  相似文献   

9.
Planetary bodies a few hundred kilometers in radii are the precursors to larger planets but it is unclear whether these bodies themselves formed very rapidly or accreted slowly over several millions of years. Ordinary H chondrite meteorites provide an opportunity to investigate the accretion time scale of a small planetary body given that variable degrees of thermal metamorphism present in H chondrites provide a proxy for their stratigraphic depth and, therefore, relative accretion times. We exploit this feature to search for nucleosynthetic isotope variability of 54Cr, which is a sensitive tracer of spatial and temporal variations in the protoplanetary disk's solids, between 17 H chondrites covering all petrologic types to obtain clues about the parent body accretionary rate. We find no systematic variability in the mass‐biased corrected abundances of 53Cr or 54Cr outside of the analytical uncertainties, suggesting very rapid accretion of the H chondrite parent body consistent with turbulent accretion. By utilizing the μ54Cr–planetary mass relationship observed between inner solar system planetary bodies, we calculate that the H chondrite accretion occurred at 1.1 ± 0.4 or 1.8 ± 0.2 Myr after the formation of calcium‐aluminum‐rich inclusions (CAIs), assuming either the initial 26Al/27Al abundance of inner solar system solids determined from angrite meteorites or CAIs from CV chondrites, respectively. Notably, these ages are in agreement with age estimates based on the parent bodies’ thermal evolution when correcting these calculations to the same initial 26Al/27Al abundance, reinforcing the idea of a secular evolution in the isotopic composition of inner disk solids.  相似文献   

10.
Alan E. Rubin 《Icarus》2011,213(2):547-558
Chondrite groups can be distinguished on the basis of their abundances of refractory lithophile elements (RLE). These abundances are, in part, functions of the mass fraction of Ca-Al-rich inclusions (CAIs) within the chondrites. Carbonaceous chondrites contain the most CAIs and the highest RLE abundances; they also contain modally abundant fine-grained matrix material that consists largely of modified nebular dust. The amount of dust varied throughout the solar nebula: enstatite and ordinary chondrites formed in low-dust regions in the inner part of the nebula, R chondrites formed in higher-dust zones at somewhat greater heliocentric distances, and carbonaceous chondrites formed in even dustier regions farther from the Sun. The amount of ambient dust peaked in the region where CV and CK chondrites accreted; these chondrites have abundant matrix, the highest modal abundances of CAIs, and the highest bulk RLE contents. Substantial amounts of nebular dust occurred in highly porous multi-millimeter-to-centimeter-size dustballs that were on the order of 100 times more massive than CAIs. Radial drift processes in the nebula affected these dustballs to approximately the same extent as the CAIs; both types of objects were aerodynamically concentrated in the same nebular regions. These regions maintained approximately the same relative amounts of dust through the periods of chondrule formation and chondrite accretion.  相似文献   

11.
Abstract– Hibonite‐bearing Ca,Al‐rich inclusions (CAIs) usually occur in CM and CH chondrites and possess petrographic and isotopic characteristics distinctive from other typical CAIs. Despite their highly refractory nature, most hibonite‐bearing CAIs have little or no 26Mg excess (the decay product of 26Al), but do show wide variations of Ca and Ti isotopic anomalies. A few spinel‐hibonite spherules preserve evidence of live 26Al with an inferred 26Al/27Al close to the canonical value. The bimodal distribution of 26Al abundances in hibonite‐bearing CAIs has inspired several interpretations regarding the origin of short‐lived nuclides and the evolution of the solar nebula. Herein we show that hibonite‐bearing CAIs from Ningqiang, an ungrouped carbonaceous chondrite, also provide evidence for a bimodal distribution of 26Al. Two hibonite aggregates and two hibonite‐pyroxene spherules show no 26Mg excesses, corresponding to inferred 26Al/27Al < 8 × 10?6. Two hibonite‐melilite spherules are indistinguishable from each other in terms of chemistry and mineralogy but have different Mg isotopic compositions. Hibonite and melilite in one of them display positive 26Mg excesses (up to 25‰) that are correlated with Al/Mg with an inferred 26Al/27Al of (5.5 ± 0.6) × 10?5. The other one contains normal Mg isotopes with an inferred 26Al/27Al < 3.4 × 10?6. Hibonite in a hibonite‐spinel fragment displays large 26Mg excesses (up to 38‰) that correlate with Al/Mg, with an inferred 26Al/27Al of (4.5 ± 0.8) × 10?5. Prolonged formation duration and thermal alteration of hibonite‐bearing CAIs seem to be inconsistent with petrological and isotopic observations of Ningqiang. Our results support the theory of formation of 26Al‐free/poor hibonite‐bearing CAIs prior to the injection of 26Al into the solar nebula from a nearby stellar source.  相似文献   

12.
High‐precision bulk aluminum‐magnesium isotope measurements of calcium‐aluminum‐rich inclusions (CAIs) from CV carbonaceous chondrites in several laboratories define a bulk 26Al‐26Mg isochron with an inferred initial 26Al/27Al ratio of approximately 5.25 × 10?5, named the canonical ratio. Nonigneous CV CAIs yield well‐defined internal 26Al‐26Mg isochrons consistent with the canonical value. These observations indicate that the canonical 26Al/27Al ratio records initial Al/Mg fractionation by evaporation and condensation in the CV CAI‐forming region. The internal isochrons of igneous CV CAIs show a range of inferred initial 26Al/27Al ratios, (4.2–5.2) × 10?5, indicating that CAI melting continued for at least 0.2 Ma after formation of their precursors. A similar range of initial 26Al/27Al ratios is also obtained from the internal isochrons of many CAIs (igneous and nonigneous) in other groups of carbonaceous chondrites. Some CAIs and refractory grains (corundum and hibonite) from unmetamorphosed or weakly metamorphosed chondrites, including CVs, are significantly depleted in 26Al. At least some of these refractory objects may have formed prior to injection of 26Al into the protosolar molecular cloud and its subsequent homogenization in the protoplanetary disk. Bulk aluminum and magnesium‐isotope measurements of various types of chondrites plot along the bulk CV CAI isochron, suggesting homogeneous distribution of 26Al and magnesium isotopes in the protoplanetary disk after an epoch of CAI formation. The inferred initial 26Al/27Al ratios of chondrules indicate that most chondrules formed 1–3 Ma after CAIs with the canonical 26Al/27Al ratio.  相似文献   

13.
Abstract— In order to investigate whether or not 26Al can be used as a fine‐scale chronometer for early solar system events we measured, with an ion microprobe, Mg isotopes and Al/Mg ratios in separated plagioclase, olivine, and pyroxene crystals from the H4 chondrites Ste Marguerite (SM), Forest Vale (FV), Beaver Creek and Quenggouk and compared the results with the canonical 26Al/27Al ratio for calcium‐aluminum‐rich inclusions (CAIs). For SM and FV, Pb/Pb and Mn‐Cr ages have previously been determined (Göpel et al., 1994; Polnau et al., 2000; Polnau and Lugmair, 2001). Plagioclase grains from these two meteorites show clear excesses of 26Mg. The 26Al/27Al ratios inferred from these excesses and from isotopically normal Mg in pyroxene and olivine are (2.87 ± 0.64) × 10?7 for SM and (1.52 ± 0.52) × 10?7 for FV. The differences between these ratios and the ratio of 5 times 10?5 in CAIs indicate time differences of 5.4 ± 0.1 Ma and 6.1 ± 0.2 Ma for SM and FV, respectively. These differences are in agreement with the absolute Pb/Pb ages for CAIs and SM and FV phosphates but there are large discrepancies between the U‐Pb and Mn‐Cr system for the relative ages for CAIs, SM and FV. For example, Mn‐Cr ages of carbonates from Kaidun are older than the Pb/Pb age of CAIs. However, even if we require that CAIs are older than these carbonates, the time difference between this “adjusted” CAI age and the Mn‐Cr ages of SM and FV require that 26 Al was widely distributed in the early solar system at the time of CAI formation and was not mostly present in CAIs, a feature of the X‐wind model proposed by Shu and collaborators (Gounelle et al., 2001; Shu et al., 2001). From this we conclude that there was enough 26Al to melt small planetary bodies as long as they formed within 2 Ma of CAIs, and that 26Al can serve as a fine‐scale chronometer for early solar system events.  相似文献   

14.
Abstract— We have made aluminum‐magnesium isotopic measurements on 4 melilite‐bearing calcium‐aluminum‐rich inclusions (CAIs), 1 plagioclase‐olivine inclusion (POI), and 2 ferromagnesian chondrules from the Ningqiang carbonaceous chondrite. All of the CAIs measured contain clear evidence for radiogenic 26Mg* from the decay of 26Al ( = 1.05 Ma). Although the low Al/Mg ratios of the melilites introduce large uncertainties, the inferred initial 26Al/27Al ratios for the CAIs are generally consistent with the value of 5 times 10?5. There is clear evidence of 26Al* in one POI and two chondrules, but with considerable uncertainties in the value of (26Al/27Al)0. The (26Al/27Al)0 ratios for the POI and the chondrules are 0.3–0.6 times 10?5, roughly an order of magnitude lower than the canonical value. Ningqiang shows very little evidence of metamorphism as a bulk object and the (26Al/27Al)0 ratios in its refractory inclusions and chondrules are consistent with those found in other unmetamorphosed chondrites of several different classes. Our observations and those of other workers support the view that 26Al was widely and approximately homogeneously distributed throughout the condensed matter of the solar system. The difference in (26Al/27Al)0 between CAIs and less refractory materials seems reasonably interpreted in terms of a ~2 million year delay between the formation of CAIs and the onset of formation of less refractory objects. The POI shows clear differences in 25Mg/24Mg between its constituent spinels and olivine, which confirms that they are partially reprocessed material from different sources that were rapidly quenched.  相似文献   

15.
Abstract— Primary minerals in calcium‐aluminum‐rich inclusions (CAIs), Al‐rich and ferromagnesian chondrules in each chondrite group have δ18O values that typically range from ?50 to +5%0. Neglecting effects due to minor mass fractionations, the oxygen isotopic data for each chondrite group and for micrometeorites define lines on the three‐isotope plot with slopes of 1.01 ± 0.06 and intercepts of ?2 ± 1. This suggests that the same kind of nebular process produced the 16O variations among chondrules and CAIs in all groups. Chemical and isotopic properties of some CAIs and chondrules strongly suggest that they formed from solar nebula condensates. This is incompatible with the existing two‐component model for oxygen isotopes in which chondrules and CAIs were derived from heated and melted 16O‐rich presolar dust that exchanged oxygen with 16O‐poor nebular gas. Some FUN CAIs (inclusions with isotope anomalies due to fractionation and unknown nuclear effects) have chemical and isotopic compositions indicating they are evaporative residues of presolar material, which is incompatible with 16O fractionation during mass‐independent gas phase reactions in the solar nebula. There is only one plausible reason why solar nebula condensates and evaporative residues of presolar materials are both enriched in 16O. Condensation must have occurred in a nebular region where the oxygen was largely derived from evaporated 16O‐rich dust. A simple model suggests that dust was enriched (or gas was depleted) relative to cosmic proportions by factors of ~10 to >50 prior to condensation for most CAIs and factors of 1–5 for chondrule precursor material. We infer that dust‐gas fractionation prior to evaporation and condensation was more important in establishing the oxygen isotopic composition of CAIs and chondrules than any subsequent exchange with nebular gases. Dust‐gas fractionation may have occurred near the inner edge of the disk where nebular gases accreted into the protosun and Shu and colleagues suggest that CAIs formed.  相似文献   

16.
Abstract— High‐precision Mg isotopic compositions of Ca‐Al‐rich inclusions (CAIs) from both Ningqiang (ungrouped) and Allende (CV3) carbonaceous chondrites and amoeboid olivine aggregations (AOAs) from Allende were analyzed by multicollector inductively coupled plasma mass spectrometry (MC‐ICP‐MS). The CAIs from Allende plot on a line, with an inferred initial 26Al/27Al ratio of (4.77 ± 0.39) × 10?5 close to the canonical value. This indicates a relatively closed Al‐Mg system in the CAIs and no significant Mg isotope exchange with ambient materials, although two of the CAIs are severely altered. The AOAs contain excess 26Mg and plot close to the CAI regression line, which is suggestive of their contemporary formation. The CAIs from Ningqiang define a different line with a lower inferred (26Al/27Al)0 ratio of (3.56 ± 0.08) × 10?5. None of the CAIs and AOAs studied in this work shows significant mass fractionation with enrichment of the heavier Mg isotopes, arguing against an evaporation origin.  相似文献   

17.
Abstract— Recent results of isotopic dating studies (182Hf‐182W, 26Al‐26Mg) and the increasing number of observed igneous and metamorphosed fragments in (primitive) chondrites provide strong evidence that accretion of differentiated planetesimals predates that of primitive chondrite parent bodies. The primitive chondrites Adrar 003 and Acfer 094 contain some unusual fragments that seem to have undergone recrystallization. Magnesium isotope analyses reveal no detectable radiogenic 26Mg in any of the studied fragments. The possibility that evidence for 26Al was destroyed by parent body metamorphism after formation is not likely because several other constituents of these chondrites do not show any metamorphic features. Since final accretion of a planetesimal must have occurred after formation of its youngest components, formation of these parent bodies must thus have been relatively late (i.e., after most 26Al had decayed). Al‐Mg isotope data for some igneous‐textured clasts (granitoids and andesitic fragments) within the two chondrite regolith breccias Adzhi‐Bogdo and Study Butte reveal also no evidence for radiogenic 26Mg. As calculated from the upper limits, the formation of these igneous clasts, the incorporation into the parent body regolith, and the lithification must have occurred at least 3.8 Myr (andesite in Study Butte) and 4.7 Myr (granitoids in Adzhi‐Bogdo) after calcium‐aluminum‐rich inclusions (CAI) formation. The absence of 26Mg excess in the igneous inclusions does not exclude 26Al from being a heat source for planetary melting. In large, early formed planetesimals, cooling below the closure temperature of the Al‐Mg system may be too late for any evidence for live 26Al (in the form of 26Mg excess) to be preserved. Thus, growing evidence exists that chondritic meteorites represent the products of a complex, multi‐stage history of accretion, parent body modification, disruption and re‐accretion.  相似文献   

18.
As gas flowed from the solar accretion disk or Solar Nebula onto the proto-Sun, magnetic pressure gradients in the solar magnetosphere and the inner Solar Nebula provided an environment where some of this infalling flow was diverted to produce a low pressure, high temperature, gaseous, “infall” atmosphere around the inner Solar Nebula. The pressure in this inner disk atmosphere was mainly dependant on the accretion flow rate onto the star. High flow rates implied relatively high pressures, which decreased over time as the accretion rate decreased.In the first hundred thousand years after the formation of the Solar Nebula, accretional flow gas pressures were high enough to create submicron-sized Refractory Metal Nuggets (RMNs) – the precursors to Calcium Aluminum Inclusions (CAIs). Optimal temperatures and pressures for RMN formation may have occurred between 20,000 and 100,000 years after the formation of the Solar Nebula. It is possible that conditions were conducive to RMN/CAI formation over an 80,000 year timescale. The “infall” atmosphere and the condensation of refractory particles within this atmosphere may be observable around the inner disks of other protostellar systems.The interaction of forces from magnetic fields with the radiation pressure from the proto-Sun and the inner solar accretion disk potentially produced an optical-magnetic trap above and below the inner Solar Nebula, which provided a relatively stable environment in which the RMNs/proto-CAIs could form and grow. These RMN formation sites only existed during accretion events from the proto-solar disk onto the proto-Sun. As such, the formation and growth time of a particular RMN was dependent on the timescale of its nascent accretion event.Observational evidence suggests that RMNs were the nucleation particles for CAIs. As a consequence, the observed bimodal distribution of 26Al in CAIs, where some CAIs have 26Al while others do not, is probably due to the injection 26Al during the short CAI formation period, where 26Al was not present when the first CAIs were formed.  相似文献   

19.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

20.
Abstract— Modal abundances of Ca,Al‐rich inclusions (CAIs) are poorly known and reported data scatter across large ranges. CAIs are Poisson distributed, and if only small areas (<1000 mm2) are studied, the data are probably not representative of the true CAI modal abundances, explaining their reported large scatter in a single chondrite group. We combine reported CAI modal abundances and our own set, and present a complete list of CAI modal abundances in carbonaceous chondrites. This includes (in area%): CV: 2.98, CM: 1.21, Acfer 094: 1.12, CO: 0.99, CK/CV (Ningqiang and Dar al Gani [DaG] 055): 0.77, CK: 0.2, CR: 0.12 and CB: 0.1. CAIs are Poisson distributed and if only small areas are studied, the data are probably not representative of the true CAI modal abundances, Carbonaceous chondrites have excess bulk Al concentrations when compared to the CI‐chondritic value. We find a correlation between this excess and CAI modal abundances and conclude that the excess Al was delivered by CAIs. The excess Al is only a minor fraction (usually ?10 rel%, but 25 rel% in case of CVs) of the bulk chondrite Al and cannot have contributed much 26Al to heat the chondrite parent body. Ordinary, enstatite, R and K chondrites have an Al deficit relative to CI chondrites and only very low CAI modal abundances, if any are present at all. Carbonaceous chondrites also had an initial Al deficit if the contribution of Al delivered by CAIs is subtracted. Therefore all chondrites probably lost a refractory rich high‐T component. Only minor amounts of CAIs are present in the matrix or have been present in the chondrule precursor aggregates. Most CAI size distributions contain more than one size population, indicating that CAIs from within a single meteorite group had different origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号