首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MRT pulsar observing system set-up in July 1996 has been used to observe about 30 pulsars at our low observing frequency of 150MHz. From the data considered so far, we have detected 10 pulsars, including the bright millisecond pulsar (MSP) J0437-4715. This is the only MSP observable at such a low frequency making its study specially interesting and more so that it has some apparently unusual properties. In this paper, we discuss some of our main results obtained on the MSP J0437-4715 and on the ‘core-single’ normal pulsarsJ1453-6413 and J1752-2806. Our results are also compared with those obtained at other frequencies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We present X-ray data of the middle-aged radio pulsar PSR B0355+54. The XMM-Newton and Chandra observations show not only emission from the pulsar itself, but also compact diffuse emission extending ∼50″ in the opposite direction to the pulsar’s proper motion. Our analysis also indicates the presence of fainter diffuse emission extending ∼5′ from the point source. The morphology of the diffuse component is similar to the ram-pressure confined pulsar wind nebulae detected for other sources. We find that the compact diffuse component is well-fitted with a power-law, with an index that is consistent with the values found for other pulsar wind nebulae. The core emission from the pulsar can be characterized with a thermal plus power-law fit, with the thermal emission most likely originating in a hot polar cap.  相似文献   

3.
Selection effects are a major source of error in statistical studies of pulsar data since the observed sample is a biased subset of the full galactic pulsar population. It is important to identify all selection effects and make a reasonable model before attempting to determine pulsar properties. Here we discuss a hitherto neglected selection effect which is a function of the periodP of the pulsar. We find that short-P pulsars are more difficult to detect, particularly if their dispersion measures are high. We also discuss a declination-dependent selection effect in the II Molonglo Survey (II MS), and find some evidence for the existence of both selection effects in the pulsar data from this survey. We discuss the implications of these additional selection effects for the recently proposed ‘injection’ of pulsars whereby pulsars seem to switch on only at longerP. Using the II MS data we calculate that the observability of pulsars withP between 0.0 s and 0.5 s is about 18 per cent less with the new selection effects than hitherto believed; the mean correction is 6 per cent forP between 0.5 s and 1.0 s. We conclude that injection is not qualitatively affected by these corrections.  相似文献   

4.
Spectral analysis of the residual pulsearrival times of pulsars is a useful tool in understanding the nature of the underlying processes that may be responsible for the timing noise observed from pulsars. Power spectra of pulsar timing residuals may be described by one or a combination of powerlaws. As these spectra are expected to be very steep, it is important to ensure a high dynamic range in the estimation of the spectrum. This is difficult in practice since one is, in general, dealing with timing measurements made at unevenly placed epochs. In this paper, we present a technique based on, ‘CLEAN’ to obtain high dynamic range spectra from unevenly sampled data. We compare the performance of this technique with other techniques including some that were used earlier for estimation of power spectra of pulsar timing residuals.  相似文献   

5.
We report on the discovery of a binary pulsar, PSR J1740−3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350 kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11 M. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045−7319.  相似文献   

6.
We explore the detailed polarization behaviour of pulsar 0823 + 26 using the technique of constructing partial ‘mode-separated’ profiles corresponding to the primary and secondary polarization modes. The characteristics of the two polarization modes in this pulsar are particularly interesting, both because they are anything but orthogonal and because the secondary mode exhibits a structure seen neither in the primary mode nor in the total profile. The new leading and trailing features in the secondary mode, which appear to represent a conal component pair, are interpreted geometrically on the basis of their width and the associated polarization-angle traverse as an outer cone. If the secondary-mode features are, indeed, an outer cone, then questions about the significance of the pulsar’s postcursor component become more pressing. It seems that 0823 + 26 has a very nearly equatorial geometry, in that both magnetic poles and the sightline all fall close to the rotational equator of the star. We thus associate the postcursor component with emission along those bundles of field lines which are also equatorial and which continue to have a tangent in the direction of our sight line for a significant portion of the star’s rotation cycle. It seems that in all pulsars with postcursor components, this emission follows the core component, and all may thus have equatorial emission geometries. No pulsars with precursors in this sense — including the Crab pulsar — are known. The distribution of power between the primary and secondary modes is very similar at both 430 and 1400 MHz. Our analysis shows that in this pulsar considerable depolarization must be occurring on time scales that are short compared to the time resolution of our observations, which is here some 0.5–1.0 milliseconds. One of the most interesting features of the modeseparated partial profiles is a phase offset between the primary and secondary modes. The secondary-mode ‘main pulse’ arrives some 1.5 ± 0.1‡ before the primary-mode one at 430 MHz and some 1.3 +0.1 ‡ at 21 cm. Given that the polar cap has an angular diameter of 3.36‡, we consider whether this is a geometric effect or an effect of differential propagation of the two modes in the inner magnetosphere of the pulsar.  相似文献   

7.
The behaviour of pulsars at low radio-frequencies (below ≈ 50 MHz) remains poorly understood mainly due to very limited observational data on pulsars at these frequencies. We report here our measurements of pulse profiles at 34.5 MHz of 8 pulsars using the Gauribidanur Radio Telescope. None of the 8 pulsars show any significant interpulse emission at this frequency which conflicts with an earlier claim from 25 MHz observations. With the exception of one pulsar (PSR 0943 + 10) all the observed pulsars show turnovers at frequencies above 35 MHz in their spectra. We also report our attempts to study the short and long term variations in the pulsar signals at this low frequency.  相似文献   

8.
We make a statistical analysis of the periodsP and period-derivativesP of pulsars using a model independent theory of pulsar flow in theP-P diagram. Using the available sample ofP andP values, we estimate the current of pulsars flowing unidirectionally along theP-axis, which is related to the pulsar birthrate. Because of radio luminosity selection effects, the observed pulsar sample is biased towards lowP and highP. We allow for this by weighting each pulsar by a suitable scale factor. We obtain the number of pulsars in our galaxy to be 6.05−2.80 +3.32 × 105 and the birthrate to be 0.048−0.011 +0.014 pulsars yr−1 galaxy−1. The quoted errors refer to 95 per cent confidence limits corresponding to fluctuations arising from sampling, but make no allowance for other systematic and random errors which could be substantial. The birthrate estimated here is consistent with the supernova rate. We further conclude that a large majority of pulsars make their first appearance at periods greater than 0.5 s. This ‘injection’, which runs counter to present thinking, is probably connected with the physics of pulsar radio emission. Using a variant of our theory, where we compute the current as a function of pulsar ‘age’ (1/2P/P), we find support for the dipole braking model of pulsar evolution upto 6 × 106 yr of age. We estimate the mean pulsar braking index to be 3.7−0.8 +0.8.  相似文献   

9.
We present a new analysis of the light curve for the secondary star in the eclipsing binary millisecond pulsar system PSR B1957+20. Combining previous data and new data points at minimum from the Hubble Space Telescope , we have 100 per cent coverage in the R -band. We also have a number of new K s-band data points, which we use to constrain the infrared magnitude of the system. We model this with the eclipsing light-curve (ELC) code. From the modelling with the ELC code we obtain colour information about the secondary at minimum light in BVRI and K . For our best-fitting model we are able to constrain the system inclination to 65°± 2° for pulsar masses ranging from 1.3 to  1.9  M  . The pulsar mass is unconstrained. We also find that the secondary star is not filling its Roche lobe. The temperature of the unirradiated side of the companion is in agreement with previous estimates and we find that the observed temperature gradient across the secondary star is physically sustainable.  相似文献   

10.
脉冲星数据比对分析和可视化系统(PSRDB,URL:http://www.psrdb.net/),由FAST(Five-hundred-meter Aperture Spherical Radio Telescope)早期科学数据中心团队为快速开展脉冲星候选体比对分析和数据管理研发.通过前端数据提交页面,接收和维护来自FAST及其他研究机构的候选体数据.目前,PSRDB已收录自1967年人类发现第1颗脉冲星以来所有公开文献发表的2811颗脉冲星样本,并采集了当前主要巡天项目尚未正式发表的源和候选体,如FAST多科学目标同时扫描巡天(CRAFTS)候选体数据.基于入库基础数据,利用位置、周期、色散等参数进行比对分析,辅助科研工作者在线检索匹配已知星表数据,最后将检索匹配、比对分析结果生成图表供进一步分析.目前,PSRDB已被应用于FAST脉冲星搜寻和候选体数据管理.未来,PSRDB可在新源认证、后随观测、观测计划制定和原始数据处理流程设计等方面提供数据和工具支撑.  相似文献   

11.
Pulsar “standard model”, that considers a pulsar as a rotating magnetized conducting sphere surrounded by plasma, is generalized to the case of oscillating star. We developed an algorithm for calculation of the Goldreich-Julian charge density for this case. We consider distortion of the accelerating zone in the polar cap of pulsar by neutron star oscillations. It is shown that for oscillation modes with high harmonic numbers (l,m) changes in the Goldreich-Julian charge density caused by pulsations of neutron star could lead to significant altering of an accelerating electric field in the polar cap of pulsar. In the moderately optimistic scenario, that assumes excitation of the neutron star oscillations by glitches, it could be possible to detect altering of the pulsar radioemission due to modulation of the accelerating field. This work was partially supported by RFBR grant 04-02-16720, and by the grants N.Sh.-5218.2006.2 and RNP-2.1.1.5940.  相似文献   

12.
We developed a pulsar search pipeline based on PulsaR Exploration and Search TOolkit(PRESTO).This pipeline simply runs dedispersion,Fast Fourier Transform(FFT) and acceleration search in process-level parallel to shorten the processing time.With two parallel strategies,the pipeline can highly shorten the processing time in both normal searches and acceleration searches.This pipeline was first tested with Parkes Multibeam Pulsar Survery(PMPS) data and discovered two new faint pulsars.Then,it was successfully applied in processing the Five-hundred-meter Aperture Spherical radio Telescope(FAST) drift scan data with tens of new pulsar discoveries up to now.The pipeline is only CPU-based and can be easily and quickly deployed in computing nodes for testing purposes or data processing.  相似文献   

13.
Pulsar B1929+10 is remarkable on a number of grounds. Its narrow primary components exhibit virtually complete and highly stable linear polarisation, which can be detected over most of its rotation cycle. Various workers have been lured by the unprecedented range over which its linear polarisation angle can be determined, and more attempts have been made to model its emission geometry than perhaps for any other pulsar. Paradoxically, there is compelling evidence to interpret the pulsar’s emission geometryboth in terms of an aligned configuration whereby its observed radiation comes from a single magnetic-polar emission regionand in terms of a nearly orthogonal configuration in which we receive emission from regions near each of its two poles. Pulsar 1929+10 thus provides a fascinating context in which to probe the conflict between these lines of interpretation in an effort to deepen our understanding of pulsar radio emission. Least-squares fits to the polarisation-angle traverse fit poorly near the main pulse and interpulse and have an inflection point far from the centre of the main pulse. This and a number of other circumstances suggest that the position-angle traverse is an unreliable indicator of the geometry in this pulsar, possibly in part because its low level ‘pedestal’ emission makes it impossible to properly calibrate a Polarimeter which correlates orthogonal circular polarisations. Taking the interpulse and main-pulse comp. II widths as indicators of the magnetic latitude, it appears that pulsar 1929+10 has anα value near 90‡ and thus has a two-pole interpulse geometry. This line of interpretation leads to interesting and consistent results regarding the geometry of the conal components. Features corresponding to both an inner and outer cone are identified. In addition, it appears that pulsar 1929+10–and a few other stars–have what we are forced to identify as a ‘furtherin’ cone, with a conal emission radius of about2.3‡/P 1/2 Secondarily, 1929+10’s nearly complete linear polarisation provides an ideal opportunity to study how mechanisms of depolarisation function on a pulse-to-pulse basis. Secondary-polarisation-mode emission appears in significant proportion only in some limited ranges of longitude, and the subsequent depolarization is studied using different mode-separation techniques. The characteristics of the two polarisation modes are particularly interesting, both because the primary mode usually dominates the secondary so completely and because the structure seen in the secondary mode appears to bear importantly on the question of the pulsar’s basic emission geometry. New secondary-mode features are detected in the average profile of this pulsar which appear independent of the main-pulse component structure and which apparently constitute displaced modal emission. Individual pulses during which the secondary-mode dominates the primary one are found to be considerably more intense than the others and largely depolarised. Monte-Carlo modeling of the mode mixing in this region, near the boundary of comps. II and III, indicates that the incoherent interference of two fully and orthogonally polarised modes can adequately account for the observed depolarisation. The amplitude distributions of the two polarisation modes are both quite steady: the primary polarisation mode is well fitted by a χ2 distribution with about nine degrees of freedom; whereas the secondary mode requires a more intense distribution which is constant, but sporadic.  相似文献   

14.
Amongst the sources seen in very high gamma-rays several are associated with Pulsar Wind Nebulae (“TeV plerions”). The study of hard X-ray/soft gamma-ray emission is providing an important insight into the energetic particle population present in these objects. The unpulsed emission from pulsar/pulsar wind nebula systems in the energy range accessible to the INTEGRAL satellite is mainly synchrotron emission from energetic and fast cooling electrons close to their acceleration site. Our analyses of public INTEGRAL data of known TeV plerions detected by ground based Cherenkov telescopes indicate a deeper link between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly discovered TeV plerion in the northern wing of the Kookaburra region (G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a previously unknown INTEGRAL counterpart which is besides the Vela pulsar the only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL counterpart of the TeV plerion associated with the X-ray PWN “Rabbit” G313.3+0.1 which is possibly powered by a young pulsar.  相似文献   

15.
The MRT survey will be by far one of the most extensive survey at low frequencies. This survey will provide a moderately deep radio catalog reaching a source density of about 2 × 104 sr-1over the southern sky with an angular resolution of 4' × 4' and a limiting flux density of 70 mJy (1 σ) at 151 MHz. The availability of zero spacing and short baselines in the MRT array will make it sensitive to the background temperature and to large scale features in the sky. In addition to this feature, the low frequency operation makes a study of continuum emission from large radio sources by MRT to have several interesting and important implications in the study of radio galaxies. This paper discusses the parameter space of radio galaxies which can be explored using the MRT. Images of a few extended radio galaxies are also presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
If cooled-down neutron stars have a thin atomic crystalline–iron crust, they must diffract X-rays of appropriate wavelength. If the diffracted beam is to be visible from Earth (an extremely rare but possible situation), the illuminating source must be very intense and near the reflecting star. An example is a binary system composed of two neutron stars in close orbit, one of them inert, the other an X-ray pulsar. (Perhaps an “anomalous” X-ray pulsar or magnetar, not powered by gas absorption from the companion or surrounding space, would be the cleanest example.) The observable to be searched for is a secondary peak added (quasi-) periodically to the main X-ray pulse. The distinguishing feature of this secondary peak is that it appears at wavelengths related by simple integer numbers, λ,λ/2,λ/3,…,λ/n because of Bragg’s diffraction law.  相似文献   

17.
The results of flux pulsar radioemission measurements at meter wavelengths, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value isv m =130±80 MHz. Averaged on many pulsars, the spectral index is negative in the 39–61 MHz frequency range and passes through zero at frequencies of about 100 MHz, becoming positive in the 100–400 MHz frequency range. It was noticed that the spectral index in the 100–400 MHz interval depends upon such pulsar periods as α100−=0.7logp+0.9. Using the spectra, more precise radio luminosities of pulsars have been computed.  相似文献   

18.
The inverse Compton (IC) scattering of ultrarelativistic electrons accelerated at the pulsar wind termination shock is generally believed to be responsible for TeV gamma-ray signal recently reported from the binary system PSR B1259-63/SS2883. In such a system the acceleration takes place in the presence of a dense radiation field provided by a companion Be2-type star. Thus it is natural to expect an orbital phase dependence of the acceleration efficiency in the system. The HESS collaboration reported the tendency of reduction of TeV γ-rays around the periastron. In this paper we study a possible explanation of this effect by the “early” (sub-TeV) cutoffs in the energy spectrum of accelerated electrons due to the enhanced rate of Compton losses close to the periastron.  相似文献   

19.
Recent observations have shown that some compact stellar binaries radiate the highest energy light in the universe. The challenge has been to determine the nature of the compact object and whether the very high energy gamma-rays are ultimately powered by pulsar winds or relativistic jets. Multiwavelength observations have shown that one of the three gamma-ray binaries known so far, PSR B1259−63, is a neutron star binary and that the very energetic gamma-rays from this source and from another gamma-ray binary, LS I +61 303, may be produced by the interaction of pulsar winds with the wind from the companion star. At this time it is an open question whether the third gamma-ray binary, LS 5039, is also powered by a pulsar wind or a microquasar jet, where relativistic particles in collimated jets would boost the energy of the wind from the stellar companion to TeV energies. I.F. Mirabel is on leave from CEA, France.  相似文献   

20.
Employing multiple pulsars and using an appropriate algorithm to establish ensemble pulsar timescale can reduce the influences of various noises on the long-term stability of pulsar timescale, compared to a single pulsar. However, due to the low timing precision and significant red noises of some pulsars,their participation in the construction of ensemble pulsar timescale is often limited. Inspired by the principle of solving non-stationary sequence modeling using co-integration theory, we put forward an algorithm based on co-integration theory to establish an ensemble pulsar timescale. It is found that this algorithm can effectively suppress some noise sources if a co-integration relationship between different pulsar data exists.Different from the classical weighted average algorithm, the co-integration method provides the chance for a pulsar with significant red noises to be included in the establishment of an ensemble pulsar timescale.Based on data from the North American Nanohertz Observatory for Gravitational Waves(NANOGrav),we found that the co-integration algorithm can successfully reduce several timing noises and improve the long-term stability of the ensemble pulsar timescale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号