首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The Lonar crater, India, is the only well‐preserved simple crater on Earth in continental flood basalts; it is excavated in the Deccan trap basalts of Cretaceous‐Tertiary age. A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post‐impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non‐chondritic or otherwise iridium‐poor impactor.  相似文献   

2.
Abstract— The 1.07 Ma well‐preserved Bosumtwi impact structure in Ghana (10.5 km in diameter) formed in 2 Ga‐old metamorphosed and crystalline rocks of the Birimian system. The interior of the structure is largely filled by the 8 km diameter Lake Bosumtwi, and the crater rim and region in the environs of the crater is covered by tropical rainforest, making geological studies rather difficult and restricted to road cuts and streams. In early 1999, we undertook a shallow drilling program to the north of the crater rim to determine the extent of the ejecta blanket around the crater and to obtain subsurface core samples for mineralogical, petrological, and geochemical studies of ejecta of the Bosumtwi impact structure. A variety of impactite lithologies are present, consisting of impact glassrich suevite and several types of breccia: lithic breccia of single rock type, often grading into unbrecciated rock, with the rocks being shattered more or less in situ without much relative displacement (autochthonous?), and lithic polymict breccia that apparently do not contain any glassy material (allochtonous?). The suevite cores show that melt inclusions are present throughout the whole length of the cores in the form of vesicular glasses with no significant change of abundance with depth. Twenty samples from the 7 drill cores and 4 samples from recent road cuts in the structure were studied for their geochemical characteristics to accumulate a database for impact lithologies and their erosion products present at the Bosumtwi crater. Major and trace element analyses yielded compositions similar to those of the target rocks in the area (graywacke‐phyllite, shale, and granite). Graywacke‐phyllite and granite dikes seem to be important contributors to the compositions of the suevite and the road cut samples (fragmentary matrix), with a minor contribution of Pepiakese granite. The results also provide information about the thickness of the fallout suevite in the northern part of the Bosumtwi structure, which was determined to be ≤15 m and to occupy an area of ?1.5 km2. Present suevite distribution is likely to be caused by differential erosion and does not reflect the initial areal extent of the continuous Bosumtwi ejecta deposits. Our studies allow a comparison with the extent of the suevite at the Ries, another well‐preserved impact structure.  相似文献   

3.
Abstract— The central uplift of the 40-km wide Araguainha impact structure, Brazil, consists of a ring, about 8 km in diameter, of up to 150-m high blocks of Devonian Furnas sandstone, which surround a central depression of elliptical shape (4.5 × 3.0 km). The depression is occupied by a pre-Devonian alkali-feldspar granite, shocked by pressures of 20–25 GPa and permeated by cataclastic shear zones and dikes of shocked granitic material. The granite is flanked and partly covered by several impact breccias: (1) Impact breccia with melt matrix overlies the granite in places and forms hills, bordering the granitic center in the S and SW. It is chemically identical with the granite and consists of thermally altered granitic clasts in a matrix of sanidine, quartz, biotite, muscovite, chlorite and riebeckite. (2) Polymict breccias form hills which border the central depression in the N and NW. Components are unshocked and shocked sediments, shock-melted sandstone, shocked granite and shock melt rocks in irregular masses and individual bodies, embedded in a fine-grained matrix. 40Ar/39Ar analyses show that the melt rocks solidified 246 Ma ago, indicating that the impact occurred at near the Permian-Triassic boundary, possibly when the area was covered by a shallow sea. The present chemistry and petrography of the melt rocks suggest that by reacting with seawater granitic impact melt was depleted of K and Rb and enriched in Na, and that later diagenetic processes produced replacement of feldspar by quartz and deposition of hematite. (3) Monomict breccias, consisting of unshocked, shocked and shock-fused quartz sandstones, form hills which surround the central depression in the SE and S. The Araguainha structure is an eroded complex crater, produced by an impact, 246 Ma ago. The depth of excavation was about 2.4 km, comprising Permian, Permo-Carboniferous and Devonian sediments and the granitic basement. The diameter of the transient crater was about 24 km. Erosion and weathering have removed most of the original crater fill and ejecta deposits, with the exception of remnants, preserved in the central uplift.  相似文献   

4.
Abstract— The 15 km diameter Ames structure in northwestern Oklahoma is located 2.75 km below surface in Cambro‐Ordovician Arbuckle dolomite, which is overlain by Middle Ordovician Oil Creek Formation shale. The feature is marked by two concentric ring structures, with the inner ring of about 5 km diameter probably representing the collapsed remnant of a structural uplift composed of brecciated Precambrian granite and Arbuckle dolomite. Wells from both the crater rim and the central uplift are oil‐ and gas‐producing, making Ames one of the economically important impact structures. Petrographic, geochemical, and age data were obtained on samples from the Nicor Chestnut 18‐4 drill core, off the northwest flank of the central uplift. These samples represent the largest and best examples of impact‐melt breccia obtained so far from the Ames structure. They contain carbonate rocks, which are derived from the target sequence. The chemical composition of the impact‐melt breccias is similar to that of target granite, with variable carbonate admixture. Some impact‐melt rocks are enriched in siderophile elements indicating the possible presence of a meteoritic component. Based on stratigraphic arguments, the age of the crater was estimated at 470 Ma. Previous 40Ar‐39Ar dating attempts of impact‐melt breccias from the Dorothy 1–19 core yielded plateau ages of about 285 Ma, which is in conflict with the stratigraphic age. The new 40Ar‐39Ar age data obtained on the melt breccias from the Nicor Chestnut core by ultraviolet (UV) laser spot analysis resulted in a range of ages with maxima around 300 Ma. These data could reflect processes related either the regional Nemaha Uplift or resetting due to hot brines active on a midcontinent‐wide scale, perhaps related to the Alleghenian and Ouachita orogenies. The age data indicate an extended burial phase associated with thermal overprint during Late Pennsylvanian‐Permian.  相似文献   

5.
6.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   

7.
Impact melt‐bearing clastic deposits (suevites) are one of the most important records of the impact cratering process. A deeper understanding of their composition and formation is therefore essential. This study focuses on impact melt particles in suevite at Ries, Germany. Textures and chemical evidence indicate that the suevite contains three melt types that originate from different shock levels in the target. The most abundant melt type (“melt type 1”) represents well‐mixed whole‐rock melting of crystalline basement and includes incompletely mixed mafic melt schlieren (“melt type 1 mafic”). Polymineralic melt type 2 comprises mixes between monomineralic melt types 3 and melt type 1. Melt types 2 and 3 are located within melt type 1 as small patches or schlieren but also isolated within the suevite matrix. The main melt type 1 is heterogeneous with respect to trace elements, varying geographically around the crater: in the western sector, it has lower values in trace elements, e.g., Ba, Zr, Th, and Ce, than in the eastern sector. The west–east zoning likely reflects the heterogeneous nature of crystalline basement target rocks with lower trace element contents, e.g., Ba, Zr, Th, and Ce, in the west compared to the east. The chemical zoning pattern of suevite melt type 1 indicates that mixing during ejection and emplacement occurred only on a local (hundreds of meters) scale. The incomplete larger scale mixing indicated by the preservation of these local chemical signatures, and schlieren corroborate the assumption that mixing, ejection, and quenching were very rapid, short‐lived processes.  相似文献   

8.
Abstract– The 3.8 km Steinheim Basin in SW Germany is a complex impact crater with central uplift hosted by a sequence of Triassic to Jurassic sedimentary rocks. It exhibits a well‐preserved crater morphology, intensely brecciated limestone blocks that form the crater rim, as well as distinct shatter cones in limestones. In addition, an impact breccia mainly composed of Middle to Upper Jurassic limestones, marls, mudstones, and sandstones is known from drilling into the impact crater. No impact melt lithologies, however, have so far been reported from the Steinheim Basin. In samples of the breccia that were taken from the B‐26 drill core, we discovered small particles (up to millimeters in size) that are rich in SiO2 (~50 wt%) and Al2O3 (~28 wt%), and contain particles of Fe‐Ni‐Co sulfides, as well as target rock clasts (shocked and unshocked quartz, feldspar, limestone) and droplet‐shaped particles of calcite. The particles exhibit distinct flow structures and relicts of schlieren and vesicles. From the geochemical composition and the textural properties, we interpret these particles as mixed silicate melt fragments widely recrystallized, altered, and/or transformed into hydrous phyllosilicates. Furthermore, we detected schlieren of lechatelierite and recrystallized carbonate melt. On the basis of impactite nomenclature, the melt‐bearing impact breccia in the Steinheim Basin can be denominated as Steinheim suevite. The geochemical character of the mixed melt particles points to Middle Jurassic sandstones (“Eisensandstein” Formation) that crop out at the center of the central uplift as the source for the melt fragments.  相似文献   

9.
Abstract— Pursuing the exploration of the Araguainha impact structure (Engelhardt et al., 1992), we present 40Ar/39Ar ages (1) of biotite samples from the granite, which forms the central uplift of the structure, and (2) of a melt rock, formed by the impact. Total degassing ages of biotites from granite samples range from 326 to 481 Ma. The variation is explained by Ar losses due to the oxidation of divalent Fe and by removal of K. The K loss depends on the time that the granite was exposed to weathering at particular outcrops. The oldest age of the least oxidized biotite from a granite sample, collected at a site most recently exposed, signifies that the ascending granite passed the 300° isotherm earlier than 481 Ma ago. Early Devonian Furnas sandstones, the oldest sediments exposed by the impact, were deposited on this granite basement 410–396 Ma ago. The 40Ar/39Ar analyses of two size fractions of an impact melt rock, resulting in plateau ages of 245.5 ± 3.5 Ma and 243.3 ± 3.0 Ma, respectively, indicate that the Araguainha impact occurred close to the Permian-Triassic boundary.  相似文献   

10.
Abstract— Detailed field mapping has revealed the presence of a series of intra‐crater sedimentary deposits within the interior of the Haughton impact structure, Devon Island, Canadian High Arctic. Coarse‐grained, well‐sorted, pale gray lithic sandstones (reworked impact melt breccias) unconformably overlie pristine impact melt breccias and attest to an episode of erosion, during which time significant quantities of impact melt breccias were removed. The reworked impact melt breccias are, in turn, unconformably overlain by paleolacustrine sediments of the Miocene Haughton Formation. Sediments of the Haughton Formation were clearly derived from pre‐impact lower Paleozoic target rocks of the Allen Bay Formation, which form the crater rim in the northern, western, and southern regions of the Haughton structure. Collectively, these field relationships indicate that the Haughton Formation was deposited up to several million years after the formation of the Haughton crater and that they do not, therefore, represent an immediate, post‐impact crater lake deposit. This is consistent with new isotopic dating of impactites from Haughton that indicate an Eocene age for the impact event (Sherlock et al. 2005). In addition, isolated deposits of post‐Miocene intra‐crater glacigenic and fluvioglacial sediments were found lying unconformably over remnants of the Haughton Formation, impact melt breccias, and other pre‐impact target rock formations. These deposits provide clear evidence for glaciation at the Haughton crater. The wealth and complexity of geological and climatological information preserved as intra‐crater deposits at Haughton suggests that craters on Mars with intra‐crater sedimentary records might present us with similar opportunities, but also possibly significant challenges.  相似文献   

11.
A silicious impact melt rock from polymict impact breccia of the northern part of the alkali granite core of the Araguainha impact structure, central Brazil, has been investigated. The melt rock is thought to represent a large mass of impact‐generated melt in suevite. In particular, a diverse population of zircon grains, with different impact‐induced microstructures, has been analyzed for U‐Pb isotopic systematics. Backscattered electron and cathodoluminescence images reveal heterogeneous intragrain domains with vesicular, granular, vesicular plus granular, and vesicular plus (presumably) baddeleyite textures, among others. The small likely baddeleyite inclusions are not only preferentially located along grain margins but also occur locally within grain interiors. LA‐ICP‐MS U‐Pb data from different domains yield lower intercept ages of 220, 240, and 260 Ma, a result difficult to reconcile with the previous “best age” estimate for the impact event at 254.7 ± 2.7 Ma. SIMS U‐Pb data, too, show a relatively large range of ages from 245 to 262 Ma. A subset of granular grains that yielded concordant SIMS ages were analyzed for crystallographic orientation by EBSD. Orientation mapping shows that this population consists of approximately micrometer‐sized neoblasts that preserve systematic orientation evidence for the former presence of the high‐pressure polymorph reidite. In one partially granular grain (#36), the neoblasts occur in linear arrays that likely represent former reidite lamellae. Such grains are referred to as FRIGN zircon. The best estimate for the age of the Araguainha impact event from our data set from a previously not analyzed type of impact melt rock is based on concordant SIMS data from FRIGN zircon grains. This age is 251.5 ± 2.9 Ma (2σ, MSWD = 0.45, p = 0.50, n = 4 analyses on three grains), indistinguishable from previous estimates based on zircon and monazite from other impact melt lithologies at Araguainha. Our work provides a new example of how FRIGN zircon can be combined with in situ U‐Pb geochronology to extract an accurate age for an impact event.  相似文献   

12.
The Terny impact structure, located in central Ukraine, displays a variety of diagnostic indicators of shock metamorphism, including shatter cones, planar deformation features in quartz, diaplectic glass, selective melting of minerals, and whole rock melting. The structure has been modified by erosion and subsequently buried by recent sediments. Although there are no natural outcrops of the deformed basement rocks within the area, mining exploration has provided surface and subsurface access to the structure, exposing impact melt rocks, shocked parautochthonous target rocks, and allochthonous impact breccias, including impact melt‐bearing breccias similar to suevites observed at the Ries structure. We have collected and studied samples from surface and subsurface exposures to a depth of approximately 750 m below the surface. This analysis indicates the Terny crater is centered on geographic coordinates 48.13° N, 33.52° E. The center location and the distribution of shock pressures constrain the transient crater diameter to be no less than approximately 8.4 km. Using widely accepted morphometric scaling relations, we estimate the pre‐erosional rim diameter of Terny crater to be approximately 16–19 km, making it close in original size to the well‐preserved El'gygytgyn crater in Siberia. Comparison with El'gygytgyn yields useful insights into the original morphology of the Terny crater and indicates that the amount of erosion Terny experienced prior to burial probably does not exceed 320 m.  相似文献   

13.
Abstract— Here we present the results of a geochemical study of the projectile component in impactmelt rocks from the Lappajärvi impact structure, Finland. Main‐ and trace‐element analyses, including platinum group elements (PGEs), were carried out on twenty impact‐melt rock samples from different locations and on two shocked granite fragments. The results clearly illustrate that all the impact melt rocks are contaminated with an extraterrestrial component. An identification of the projectile type was performed by determining the projectile elemental ratios and comparing the corresponding element ratios in chondrites. The projectile elemental ratios suggest an H chondrite as the most likely projectile type for the Lappajärvi impact structure. The PGE composition of the highly diluted projectile component (?0.05 and 0.7 wt% in the impact‐melt rocks) is similar to the recent meteorite population of H chondrites reaching Earth. The relative abundance of ordinary chondrites, including H, L, and LL chondrites, as projectiles at terrestrial impact structures is most likely related to the position of their parent bodies relative to the main resonance positions. This relative abundance of ordinary chondrites suggests a strong bias of the impactor population toward inner Main Belt objects.  相似文献   

14.
Martian meteorite Elephant Moraine A79001 (EET 79001) has received considerable attention for the unusual composition of its shock melt glass, particularly its enrichment in sulfur relative to the host shergottite. It has been hypothesized that Martian regolith was incorporated into the melt or, conversely, that the S‐enrichment stems from preferential melting of sulfide minerals in the host rock during shock. We present results from an electron microprobe study of EET 79001 including robust measurements of major and trace elements in the shock melt glass (S, Cl, Ni, Co, V, and Sc) and minerals in the host rock (Ni, Co, and V). We find that both S and major element abundances can be reconciled with previous hypotheses of regolith incorporation and/or excess sulfide melt. However, trace element characteristics of the shock melt glass, particularly Ni and Cl abundances relative to S, cannot be explained either by the incorporation of regolith or sulfide minerals. We therefore propose an alternative hypothesis whereby, prior to shock melting, portions of EET 79001 experienced acid‐sulfate leaching of the mesostasis, possibly groundmass feldspar, and olivine, producing Al‐sulfates that were later incorporated into the shock melt, which then quenched to glass. Such activity in the Martian near‐surface is supported by observations from the Mars Exploration Rovers and laboratory experiments. Our preimpact alteration model, accompanied by the preferential survival of olivine and excess melting of feldspar during impact, explains the measured trace element abundances better than either the regolith incorporation or excess sulfide melting hypothesis does.  相似文献   

15.
Abstract— The Chicxulub Scientific Drilling Project (CSDP), Mexico, produced a continuous core of material from depths of 404 to 1511 m in the Yaxcopoil‐1 (Yax‐1) borehole, revealing (top to bottom) Tertiary marine sediments, polymict breccias, an impact melt unit, and one or more blocks of Cretaceous target sediments that are crosscut with impact‐generated dikes, in a region that lies between the peak ring and final crater rim. The impact melt and breccias in the Yax‐1 borehole are 100 m thick, which is approximately 1/5 the thickness of breccias and melts exposed in the Yucatán‐6 exploration hole, which is also thought to be located between the peak ring and final rim of the Chicxulub crater. The sequence and composition of impact melts and breccias are grossly similar to those in the Yucatán‐6 hole. Compared to breccias in other impact craters, the Chicxulub breccias are incredibly rich in silicate melt fragments (up to 84% versus 30 to 50%, for example, in the Ries). The melt in the Yax‐1 hole was produced largely from the silicate basement lithologies that lie beneath a 3 km‐ thick carbonate platform in the target area. Small amounts of immiscible molten carbonate were ejected with the silicate melt, and clastic carbonate often forms the matrix of the polymict breccias. The melt unit appears to have been deposited while molten but brecciated after solidification. The melt fragments in the polymict breccias appear to have solidified in flight, before deposition, and fractured during transport and deposition.  相似文献   

16.
Abstract— The 40 km wide Araguainha structure in central Brazil is a shallowly eroded impact crater that presents unique insights into the final stages of complex crater formation. The dominant structural features preserved at Araguainha relate directly to the centripetal movement of the target rocks during the collapse of the transient cavity. Slumping of the transient cavity walls resulted in inward‐verging inclined folds and a km‐scale anticline in the outer ring of the structure. The folding stage was followed by radial and concentric faulting, with downward displacement of kilometer‐scale blocks around the crater rim. The central uplift records evidence for km‐scale upward movement of crystalline basement rocks from the transient cavity floor, and lateral moment of sedimentary target rocks detached from the cavity walls. Much of the structural grain in the central uplift relates to structural stacking of km‐scale thrust sheets of sedimentary strata onto the core of crystalline basement rocks. Outward‐plunging radial folds indicate tangential oblate shortening of the strata during the imbrication of the thrust sheets. Each individual sheet records an early stage of folding and thickening due to non‐coaxial strains, shortly before sheet imbrication. We attribute this folding and thickening phase to the kilometer‐scale inward movement of the target strata from the transient cavity walls to the central uplift. The outer parts of the central uplift record additional outward movement of the target rocks, possibly related to the collapse of the central uplift. An inner ring structure at 10–12 km from the crater center marks the extent of the deformation related to the outward movement of the target rocks.  相似文献   

17.
Abstract– Melt‐bearing impactites dominated by suevite, and with a minor content of clast‐rich impact melt rock, are found within the central part of the Gardnos structure. They are preserved as the eroded remnants in the relatively small complex impact structure with a present diameter of 5 km. These rocks have been mapped in the field and in the Branden drill core, and described according to mineralogy/petrology, including matrix, litho clast, and melt content, as well as geochemistry. Based on our extensive field mapping, a simple 3‐D model of the original crater was constructed to estimate tentative volumes for the melt‐bearing impactites. The variations in lithic and melt fragment content and chemistry of suevite matrix can mostly be explained by incorporation of mafic rocks into a dominant mixture of granitic, gneissic, and quartzitic target rocks, reflecting mixing of material from different parts of the crater. Melt fragments within suevite occur with a variety of shapes and textures, probably related to different original target rock composition, to the various temperatures the individual fragments were subjected to during the impact event and deposition processes. This study discusses the impact‐related deposits based on a sedimentological approach. Their overall composition and structures indicate dominating gravity flow processes in the final transportation and deposition of the suevite.  相似文献   

18.
The interface between impact melt rocks and underlying footwall lithologies within the Manicouagan impact structure is defined by a zone of dynamic mixing (<20 m thick). This zone transitions as a continuum from clast‐free to clast‐bearing impact melt rocks, through melt‐bearing breccias to melt‐free breccias. Field observations; microscopy; and major, trace, and rare earth element analysis indicate that the breccias are derived by blending two endmembers during the impact process: impact melt and brecciated footwall. The product is a basal breccia sequence, which locally includes the rock type referred to as suevite. In this occurrence, the suevite is a submelt sheet variety, in contrast to similar lithologies that are developed atop impact melt sheets, or beyond crater rims. Dynamic mixing between impact melt and basal clastic material at Manicouagan is attributed to the initial high‐speed centrifugal outflow of superheated, low viscosity impact melt over underlying fractured and fragmented footwall, and its centripetal return during the earlier stages of the crater modification process. The interaction of two fluids (melt with a mobilized granular medium) possessing contrasting densities, and moving at different velocities, can facilitate shear instabilities and turbulent mixing that may be characteristic of Kelvin–Helmholtz behavior.  相似文献   

19.
Abstract— The Footwall Breccia layer in the North Range of the Sudbury impact structure is up to 150 m thick. It has been analyzed for several aspects: shock metamorphism of clasts, matrix texture, mineralogy, and geochemistry with respect to major and trace element compositions. The matrix of this heterolithic breccia contains mineral and lithic fragments, which have suffered shock pressures exceeding 10 GPa, along with clasts of breccia dikes originating from the crater basement. The matrix in a zone near the upper contact of the breccia layer is dominated by a dioritic composition with intersertal textures, whereas beneath this zone the matrix is characterized by poikilitic to granular textures and a tonalitic to granitic composition. Major and trace element analyses of adjacent slices of a thin-slab profile from the breccia show that the matrix is chemically inhomogeneous within a range of 3 mm. The breccia layer has been thermally annealed by the overlying Sudbury Igneous Complex, which is interpreted as a coherent impact melt sheet. The Rb-Sr isochron age of 1.825 ± 0.021 Ga for the matrix is a cooling age after partial melting of fine grained clastic material by the melt system. Two-pyroxene thermometry calculations give temperatures in excess of 1000 °C for this thermal overprinting. Clasts were affected by recrystallization, melting, and reactions with the surrounding matrix at that time. The crystallization of the molten matrix resulted in the observed variety of igneous textures. Results of clast population statistics for the Footwall Breccia along with both geochemical considerations and the Sr-Nd isotopic signature of the matrix indicate that the breccia constituents exclusively derived from the Levack gneiss complex, which forms the local country rock to the breccia layer in the Levack area. K-feldspar-rich domains, which tend to replace parts of matrix and felsic gneiss fragments have been formed due to metasomatic activities during the Penokean orogeny, ~ 1.7 Ga ago. The available observations suggest that the Sudbury structure represents the remnant of a multi-ring basin with an apparent diameter between 180 and 200 km and a diameter of the transient cavity of about 100 km. For a crater of the size of the Sudbury basin a maximum depth of excavation of ~21 km and a depth of shock-melted target rocks of ~27 km are obtained. In the Sudbury crater, the Footwall Breccia layer represents a part of the uplifted crater floor directly underlying the thick coherent impact melt sheet.  相似文献   

20.
Abstract— Recent drilling operations at the 90 km diameter, late Triassic Manicouagan impact crater of Quebec, Canada, have provided new insight into the internal structure of a complex crater's central region. Previous work had indicated that the impact event generated a ?55 km diameter sheet of molten rock of relatively consistent (originally ?400 m) thickness (Floran et al. 1978). The drilling data reveals melt sheet thicknesses of up to ?1500 m, with kilometer‐scale lateral and substantial vertical variations in the geometry of the crater floor beneath the melt sheet. The thickest melt section occurs in a 1500 m deep central trough encircled by a horseshoe‐shaped uplift of Precambrian basement. The uplift constitutes a modified central peak structure, at least part of which breached the melt sheet. Mineralogical and compositional segregation (differentiation) of the thicker melt sheet section, coupled with a lack of fractionation in the thinner units, shows that the footwall geometry and associated trough structure were in place prior to melt sheet solidification. Marked lateral changes in sub‐melt sheet (basement) relief support the existence of a castellated footwall that was created by high‐angle, impact‐related offsets of 100s to 1000s of meters. This indicates that deformation during the modification stage of the cratering process was primarily facilitated by large‐displacement fault systems. This work suggests that Manicouagan is a central peak basin with rings, which does not appear to fit with current complex crater classification schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号