首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Queen Alexandra Range (QUE) 94281, a lunar meteorite recently discovered in Antarctica, is a glassy-matrix, clast-rich regolith breccia containing a mixture of mafic, volcanic-glass and gabbroic constituents and a diverse set of highland constituents. In thin section, the clast assemblage is dominated by coarse mineral debris from a shallow intrusive or hypabyssal setting, or from deep within a thick mare flow. Abundant coarse-grained pyroxene clasts have fine-scale exsolution lamellae and compositions similar to pyroxenes of known lunar very-low-Ti (VLT) basalts and other lunar meteorites of basaltic composition. Pyroxene compositions follow Fe-enrichment extending to hedenbergite, which is associated with fayalite and cristobalite, indicating slow cooling. We refer to the protolith of the crystalline VLT component as VLT gabbro. Fragments of pyroclastic glasses that have high Fe and low Ti concentrations, similar to the pyroclastic green glasses known from Apollo samples, are common. Lithic clasts include abundant subrounded, glassy to cryptocrystalline, aluminous (~17–30 wt% Al2O3) KREEP-poor melt breccias of highland origin and a variety of other feldspathic impactites. On the basis of composition of our subsamples, QUE 94281 consists of ~54 wt% mafic or “mare” components and 46 wt% feldspathic or “highland” components. The bulk composition of QUE 94281 is similar to that of Yamato (Y) 793274, but QUE 94281 has slightly greater concentrations of some siderophile elements and slightly lower concentrations of those elements contributed mainly by mafic constituents. Differences in siderophile element concentrations are consistent with longer surface exposure of QUE 94281. Minor differences in trace element variations of subsamples of the two meteorites suggest subtle differences in the composition of their highland constituents. Nonetheless, the overall similarity of compositions supports the possibility that they were ejected from the same source region on the Moon. The crystalline VLT component of QUE 94281 differs from those known from Apollo 17 and Luna 24 VLT lithologies and from that of basaltic breccia Elephant Moraine (EET) 87521. The VLT-gabbro component and the ferroan VLT volcanic glasses in QUE 94281 have compositions that may be petrogenetically related by derivation from a common picritic parent composition, represented by an ultramafic glass found in QUE 94281.  相似文献   

2.
Abstract— Dhofar 287 (Dho 287), a recently found lunar meteorite, consists in large part (95%) of low‐Ti mare basalt (Dho 287A) and a minor, attached portion (?5%) of regolith breccia (Dho 287B). The present study is directed mainly at the breccia portion of this meteorite. This breccia consists of a variety of lithic clasts and mineral fragments set in a fine‐grained matrix and minor impact melt. The majority of clasts and minerals appear to have been mainly derived from the low‐Ti basalt suite, similar to that of Dho 287A. Very low‐Ti (VLT) basalts are a minor lithology of the breccia. These are significantly lower in Mg# and slightly higher in Ti compared to Luna 24 and Apollo 17 VLT basalts. Picritic glasses constitute another minor component of the breccia and are compositionally similar to Apollo 15 green glasses. Dho 287B also contains abundant fragments of Mg‐rich pyroxene and anorthite‐rich plagioclase grains that are absent in the lithic clasts. Such fragments appear to have been derived from a coarse‐grained, Mg#‐rich, Na‐poor lithology. A KREEP component is apparent in chemistry, but no highlands lithologies were identified. The Dho 287 basaltic lithologies cannot be explained by near‐surface fractionation of a single parental magma. Instead, magma compositions are represented by a picritic glass; a low‐Ti, Na‐poor glass; and a low‐Ti, Na‐enriched source (similar to the Dho 287A parental melt). Compositional differences among parent melts could reflect inhomogeneity of the lunar mantle. Alternatively, the low‐Ti, Na‐poor, and Dho 287A parent melts could be of hybrid compositions, resulting from assimilation of KREEP by picritic magma. Thus, the Dho 287B breccia contains lithologies from multiple magmatic eruptions, which differed in composition, formational conditions, and cooling histories. Based on this study, the Dho 287 is inferred to have been ejected from a region located distal to highlands terrains, possibly from the western limb of the lunar nearside, dominated by mare basalts and KREEP‐rich lithologies.  相似文献   

3.
Abstract– Lunar meteorite Northeast Africa (NEA) 001 is a feldspathic regolith breccia. This study presents the results of electron microprobe and LA‐ICP‐MS analyses of a section of NEA 001. We identify a range of lunar lithologies including feldspathic impact melt, ferroan noritic anorthosite and magnesian feldspathic clasts, and several very‐low titanium (VLT) basalt clasts. The largest of these basalt clasts has a rare earth element (REE) pattern with light‐REE (LREE) depletion and a positive Euanomaly. This clast also exhibits low incompatible trace element (ITE) concentrations (e.g., <0.1 ppm Th, <0.5 ppm Sm), indicating that it has originated from a parent melt that did not assimilate KREEP material. Positive Eu‐anomalies and such low‐ITE concentrations are uncharacteristic of most basalts returned by the Apollo and Luna missions, and basaltic lunar meteorite samples. We suggest that these features are consistent with the VLT clasts crystallizing from a parent melt which was derived from early mantle cumulates that formed prior to the separation of plagioclase in the lunar magma ocean, as has previously been proposed for some other lunar VLT basalts. Feldspathic impact melts within the sample are found to be more mafic than estimations for the composition of the upper feldspathic lunar crust, suggesting that they may have melted and incorporated material from the lower lunar crust (possibly in large basin‐forming events). The generally feldspathic nature of the impact melt clasts, lack of a KREEP component, and the compositions of the basaltic clasts, leads us to suggest that the meteorite has been sourced from the Outer‐Feldspathic Highlands Terrane (FHT‐O), probably on the lunar farside and within about 1000 km of sources of both Low‐Ti and VLT basalts, the latter possibly existing as cryptomaria deposits.  相似文献   

4.
Abstract— We present the petrography and geochemistry of five 2–4 mm basalt fragments from the Apollo 16 regolith. These fragments are 1) a high‐Ti vitrophyric basalt compositionally similar to Apollo 17 high‐Ti mare basalts, 2) a very high‐Ti vitrophyric basalt compositionally similar to Apollos 12 and 14 red‐black pyroclastic glass, 3) a coarsely crystalline high‐Al basalt compositionally similar to group 5 Apollo 14 high‐Al mare basalts, 4) a very low‐Ti (VLT) crystalline basalt compositionally similar to Luna 24 VLT basalts, and 5) a VLT basaltic glass fragment compositionally similar to Apollo 17 VLT basalts. High‐Ti basalt has been reported previously at the Apollo 16 site; the other basalt types have not been reported previously. As there are no known cryptomaria or pyroclastic deposits in the highlands near the Apollo 16 site (ruling out a local origin), and scant evidence for basaltic material in the Apollo 16 ancient regolith breccias or Apollo 16 soils collected near North Ray Crater (ruling out a basin ejecta origin), we infer that the basaltic material in the Apollo 16 regolith originated in maria near the Apollo 16 site and was transported laterally to the site by small‐ to medium‐sized post‐basin impacts. On the basis of TiO2 concentrations derived from the Clementine UVVIS data, Mare Tranquillitatis (?300 km north) is the most likely source for the high‐Ti basaltic material at the Apollo 16 site (craters Ross, Arago, Dionysius, Maskelyne, Moltke, Sosigenes, Schmidt), Mare Nectaris/Sinus Asperitatis (?220 km east) is the most likely source for the low‐Ti and VLT basaltic material (craters Theophilus, Madler, Torricelli), and a large regional pyroclastic deposit near Mare Vaporum (?600 km northwest) is the most likely source region for pyroclastic material (although no source craters are apparent in the region).  相似文献   

5.
Abstract— We report on the bulk composition and petrography of four new basaltic meteorites found in Antarctica—LAP (LaPaz Icefield) 02205, LAP 02224, LAP 02226, and LAP 02436—and compare the LAP meteorites to other lunar mare basalts. The LAP meteorites are coarse‐grained (up to 1.5 mm), subophitic low‐Ti basalts composed predominantly of pyroxene and plagioclase, with minor amounts of olivine, ilmenite, and a groundmass dominated by fayalite and cristobalite. All of our observations and results support the hypothesis that the LAP stones are mutually paired with each other. In detail, the geochemistry of LAP is unlike those of any previously studied lunar basalt except lunar meteorite NWA (Northwest Africa) 032. The similarities between LAP and NWA 032 are so strong that the two meteorites are almost certainly source crater paired and could be two different samples of a single basalt flow. Petrogenetic modeling suggests that the parent melt of LAP (and NWA 032) is generally similar to Apollo 15 low‐Ti, yellow picritic glass beads, and that the source region for LAP comes from a similar region of the lunar mantle as previously analyzed lunar basalts.  相似文献   

6.
Abstract— Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A‐B‐C glass trends could not have been formed by fractional crystallization or any continuous assimilation/fractional crystallization (AFC) process. The B and C glass compositional trends could not have been formed by batch or incremental melting of an olivine + orthopyroxene source or any other homogeneous source, though the A glasses may have been formed by congruent melting over a small pressure range at depth. The B compositional trend is well modeled by starting with an intermediate A composition and assimilating a shallower, melted cumulate, and the C compositional trend is well modeled by a second assimilation event. The assimilation process envisioned is one in which heat and mass transfer were separated in space and time. In an initial intrusive event, a picritic magma crystallized and provided heat to melt magma ocean cumulates. In a later replenishment event, the picritic magma incrementally mixed with the melted cumulate (creating the compositional trends in the green glass data set), ascended to the lunar surface, and erupted as a fire fountain. A barometer created from multiple saturation points provides a depth estimate of other glasses in the A‐B‐C trend and of the depths of assimilation. This barometer demonstrates that the Apollo 15 A‐B‐C trend originated over a depth range of ?460 km to ?260 km within the moon.  相似文献   

7.
Abstract— Major element and sulfur concentrations have been determined in experimentally heated olivine‐hosted melt inclusions from a suite of Apollo 12 picritic basalts (samples 12009, 12075, 12020, 12018, 12040, 12035). These lunar basalts are likely to be genetically related by olivine accumulation (Walker et al. 1976a, b). Our results show that major element compositions of melt inclusions from samples 12009, 12075, and 12020 follow model crystallization trends from a parental liquid similar in composition to whole rock sample 12009, thereby partially confirming the olivine accumulation hypothesis. In contrast, the compositions of melt inclusions from samples 12018, 12040, and 12035 fall away from model crystallization trends, suggesting that these samples crystallized from melts compositionally distinct from the 12009 parent liquid and therefore may not be strictly cogenetic with other members of the Apollo 12 picritic basalt suite. Sulfur concentrations in melt inclusions hosted in early crystallized olivine (Fo75) are consistent with a primary magmatic composition of 1050 ppm S, or about a factor of 2 greater than whole rock compositions with 400–600 ppm S. The Apollo 12 picritic basalt parental magma apparently experienced outgassing and loss of S during transport and eruption on the lunar surface. Even with the higher estimates of primary magmatic sulfur concentrations provided by the melt inclusions, the Apollo 12 picritic basalt magmas would have been undersaturated in sulfide in their mantle source regions and capable of transporting chalcophile elements from the lunar mantle to the surface. Therefore, the measured low concentration of chalcophile elements (e.g., Cu, Au, PGEs) in these lavas must be a primary feature of the lunar mantle and is not related to residual sulfide remaining in the mantle during melting. We estimate the sulfur concentration of the Apollo 12 mare basalt source regions to be ~75 ppm, which is significantly lower than that of the terrestrial mantle.  相似文献   

8.
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity.  相似文献   

9.
10.
Abstract— Thirteen glasses from Apollo 17 regolith 71501,262 have been chemically analyzed by electron microprobe and isotopically dated with the 40Ar/39Ar dating method. We report here the first isotopic age obtained for the Apollo 17 very low titanium (VLT) volcanic glasses, 3630 ± 40 Ma. Twelve impact glasses that span a wide compositional range have been found to record ages ranging from 102 ± 20 Ma to 3740 ± 50 Ma. The compositions of these impact glasses show that some have been produced by impact events within the Apollo 17 region, whereas others appear to be exotic to the landing site. As the data sets that include compositions and ages of lunar impact glasses increase, the impact history in the Earth‐Moon system will become better constrained.  相似文献   

11.
New data from a petrological and geochemical examination of 12 coarse basaltic fines from the Apollo 12 soil sample 12023,155 provide evidence of additional geochemical diversity at the landing site. In addition to the bulk chemical composition, major, minor, and trace element analyses of mineral phases are employed to ascertain how these samples relate to the Apollo 12 lithological basalt groups, thereby overcoming the problems of representativeness of small samples. All of the samples studied are low‐Ti basalts (0.9–5.7 wt% TiO2), and many fall into the established olivine, pigeonite, and ilmenite classification of Apollo 12 basaltic suites. There are five exceptions: sample 12023,155_1A is mineralogically and compositionally distinct from other Apollo 12 basalt types, with low pigeonite REE concentrations and low Ni (41–55 ppm) and Mn (2400–2556 ppm) concentrations in olivine. Sample 12023,155_11A is also unique, with Fe‐rich mineral compositions and low bulk Mg# (=100 × atomic Mg/[Mg+Fe]) of 21.6. Sample 12023,155_7A has different plagioclase chemistry and crystallization trends as well as a wider range of olivine Mg# (34–55) compared with other Apollo 12 basalts, and shows greater similarities to Apollo 14 high‐Al basalts. Two other samples (12023,155_4A, and _5A) are similar to the Apollo 12 feldspathic basalt 12038, providing additional evidence that feldspathic basalts represent a lava flow proximal to the Apollo 12 site rather than material introduced by impacts. We suggest that at least one parent magma, and possibly as many as four separate parent magmas, are required in addition to the previously identified olivine, pigeonite, and ilmenite basaltic suites to account for the observed chemical diversity of basalts found in this study.  相似文献   

12.
Northwest Africa (NWA) 4898 is the only low‐Ti, high‐Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12–62Fs25–62Wo11–36), which display a continuous trend from Mg‐rich cores toward Ca‐rich mantles and then to Fe‐rich rims. Plagioclase has relatively restricted compositions (An87–96Or0–1Ab4–13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high‐Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high‐Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high‐Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed‐system fractional crystallization.  相似文献   

13.
Abstract— The Calcalong Creek lunar meteorite is a polymict breccia that contains clasts of both highlands and mare affinity. Reported here is a compilation of major, minor, and trace element data for bulk, clast, and matrix samples determined by instrumental neutron activation analysis (INAA). Petrographic information and results of electron microprobe analyses are included. The relationship of Calcalong Creek to lunar terranes, especially the Procellarum KREEP Terrane and Feldspathic Highlands Terrane, is established by the abundance of thorium, incompatible elements and their KREEP‐like CI chondrite normalized pattern, FeO, and TiO2. The highlands component is associated with Apollo 15 KREEP basalt but represents a variant of the KREEP‐derived material widely found on the moon. Sources of Calcalong Creek's mare basalt components may be related to low‐titanium (LT) and very low‐titanium (VLT) basalts seen in other lunar meteorites but do not sample the same source. The content of some components of Calcalong Creek are found to display similarities to the composition of the South Pole‐Aitken Terrane. What appear to be VLT relationships could represent new high aluminum, low titanium basalt types.  相似文献   

14.
Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile‐bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk‐rock basaltic composition and that of bulk‐mesostasis regions, indicating that bulk‐rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late‐stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite‐melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.  相似文献   

15.
Dar al Gani (DaG) 400, Meteorite Hills (MET) 01210, Pecora Escarpment (PCA) 02007, and MacAlpine Hills (MAC) 88104/88105 are lunar regolith breccia meteorites that provide sampling of the lunar surface from regions of the Moon that were not visited by the US Apollo or Soviet Luna sample return missions. They contain a heterogeneous clast population from a range of typical lunar lithologies. DaG 400, PCA 02007, and MAC 88104/88105 are primarily feldspathic in nature, and MET 01210 is composed of mare basalt material mixed with a lesser amount of feldspathic material. Here we present a compositional study of the impact melt and impact melt breccia clast population (i.e., clasts that were generated in impact cratering melting processes) within these meteorites using in situ electron microprobe and LA‐ICP‐MS techniques. Results show that all of the meteorites are dominated by impact lithologies that are relatively ferroan (Mg#<70), have high Sc/Sm ratios (typically >10), and have low incompatible trace element (ITE) concentrations (i.e., typically <3.2 ppm Sm, <1.5 ppm Th). Feldspathic impact melt in DaG 400, PCA 02007, and MAC 88104/05 are similar in composition to that estimated composition for upper feldspathic lunar crust ( Korotev et al. 2003 ). However, these melt types are more mafic (i.e., less Eu, less Sr, more Sc) than feldspathic impact melts returned by the Apollo 16 mission (e.g., the group 3 and 4 varieties). Mafic impact melt clasts are common in MET 01210 and less common in PCA 02007 and MAC 88104/05. We show that unlike the Apollo mafic impact melt groups ( Jolliff 1998 ), these meteorite impact melts were not formed from melting large amounts of KREEP‐rich (typically >10 ppm Sm), High Magnesium Suite (typically >70 Mg#) or High Alkali Suite (high ITEs, Sc/Sm ratios <2) target rocks. Instead the meteorite mafic melts are more ferroan, KREEP‐poor and Sc‐rich, and represent mixing between feldspathic lithologies and low‐Ti or very low‐Ti (VLT) basalts. As PCA 02007 and MAC 88104/05 were likely sourced from the Outer‐Feldspathic Highlands Terrane our findings suggest that these predominantly feldspathic regions commonly contain a VLT to low‐Ti basalt contribution.  相似文献   

16.
Abstract— –Sayh al Uhaymir (SaU) 169 is a composite lunar meteorite from Oman that consists of polymict regolith breccia (8.44 ppm Th), adhering to impact‐melt breccia (IMB; 32.7 ppm Th). In this contribution we consider the regolith breccia portion of SaU 169, and demonstrate that it is composed of two generations representing two formation stages, labeled II and III. The regolith breccia also contains the following clasts: Ti‐poor to Ti‐rich basalts, gabbros to granulites, and incorporated regolith breccias. The average SaU 169 regolith breccia bulk composition lies within the range of Apollo 12 and 14 soil and regolith breccias, with the closest correspondence being with that of Apollo 14, but Sc contents indicate a higher portion of mare basalts. This is supported by relations between Sm‐Al2O3, FeO‐Cr2O3‐TiO2, Sm/Eu and Th‐K2O. The composition can best be modeled as a mixture of high‐K KREEP, mare basalt and norite/troctolite, consistent with the rareness of anorthositic rocks. The largest KREEP breccia clast in the regolith is identical in its chemical composition and total REE content to the incompatible trace‐element (ITE)‐ rich high‐K KREEP rocks of the Apollo 14 landing site, pointing to a similar source. In contrast to Apollo 14 soil, SaU 169 IMB and SaU 169 KREEP breccia clast, the SaU 169 regolith is not depleted in K/Th, indicating a low contribution of high‐Th IMB such as the SaU 169 main lithology in the regolith. The data presented here indicate the SaU 169 regolith breccia is from the lunar front side, and has a strong Procellarum KREEP Terrane signature.  相似文献   

17.
Abstract— Eighteen new lithic fragments from the Soviet Luna missions have been analyzed with electron microprobe and 40Ar‐39Ar methods. Luna 16 basalt fragments have aluminous compositions consistent with previous analyses, but have two distinct sets of well‐constrained ages (3347 ± 24 Ma, 3421 ± 30 Ma). These data, combined with other Luna 16 basalt ages, imply that there were multiple volcanic events filling Mare Fecunditatis. The returned basalt fragments have relatively old cosmicray exposure (CRE) ages and may have been recovered from the ejecta blanket of a young (1 Ga), nearby crater. A suite of highlands rocks (troctolites and gabbros) is represented in the new Luna 20 fragments. One fragment is the most compositionally primitive (Mg# = 91–92) spinel troctolite yet found. Both troctolites have apparent crystallization ages of 4.19 Ga; other rocks in the suite have progressively younger ages and lower Mg#s. The age and composition progression suggests that these rocks may have crystallized from a single source magma, or from similar sources mobilized at the same time. Within the new Luna 24 basalt fragments is a quench‐textured olivine vitrophyre with the most primitive composition yet analyzed for a Luna 24 basalt, and several much more evolved olivine‐bearing basalts. Both new and previously studied Luna 24 very low‐Ti (VLT) basalt fragments have a unimodal age distribution (3273 ± 83 Ma), indicating that most returned samples come from a single extrusive episode within Mare Crisium much later than the Apollo 17 VLT basalts (3.6–3.7 Ga).  相似文献   

18.
Abstract— We studied 42 impact‐melt clasts from lunar feldspathic regolith breccias MacAlpine Hills (MAC) 88105, Queen Alexandra Range (QUE) 93069, Dar al Gani (DaG) 262, and DaG 400 for texture, chemical composition, and/or chronology. Although the textures are similar to the impactmelt clasts identified in mafic Apollo and Luna samples, the meteorite clasts are chemically distinct from them, having lower Fe, Ti, K, and P, thus representing previously unsampled impacts. The 40Ar‐39Ar ages on 31 of the impact melts, the first ages on impact‐melt samples from outside the region of the Apollo and Luna sampling sites, range from ~4 to ~2.5 Ga. We interpret these samples to have been created in at least six, and possibly nine or more, different impact events. One inferred impact event may be consistent with the Apollo impact‐melt rock age cluster at 3.9 Ga, but the meteorite impact‐melt clasts with this age are different in chemistry from the Apollo samples, suggesting that the mechanism responsible for the 3.9 Ga peak in lunar impact‐melt clast ages is a lunar‐wide phenomenon. No meteorite impact melts have ages more than 1s? older than 4.0 Ga. This observation is consistent with, but does not require, a lunar cataclysm.  相似文献   

19.
Abar al' Uj (AaU) 012 is a clast‐rich, vesicular impact‐melt (IM) breccia, composed of lithic and mineral clasts set in a very fine‐grained and well‐crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN‐suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a ~1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali‐suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN‐ or Mg‐suite. Its lower Mg# (59) compared to Mg‐suite rocks also excludes a relationship with these types of lunar material.  相似文献   

20.
Abstract– We have studied 27 KREEP basalt fragments in six thin sections of samples collected from four Apollo 15 stations. Based on local geology and regional remote sensing data, these samples represent KREEP basalt lava flows that lie beneath the younger, local Apollo 15 mare basalts and under other mare flows north of the Apollo 15 site. Some of these rocks were deposited at the site as ejecta from the large craters Aristillus and Autolycus. KREEP basalts in this igneous province have a volume of 103–2 × 104 km3. Mineral and bulk compositional data indicate that the erupted magmas had Mg# [100 × molar Mg/(Mg + Fe)] up to 73, corresponding to orthopyroxene‐rich interior source regions with Mg# up to 90. Minor element variations in the parent magmas of the KREEP basalts, inferred from compositions of the most magnesian pyroxene and most calcic plagioclase in each sample, indicate small but significant differences in the concentrations of minor elements and Mg#, reflecting variations in the composition of lower crustal or mantle source regions and/or different amounts of partial melting of those source regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号