首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A self-consistent pulsar magnetospheric model with electron-positron pair production is considered. Unlike conventional models, the primary particles (electrons) are accelerated towards the neutron star and their curvature radiation towards a star generates electron-positron plasma near the neutron star. Inside an outflow channel, the generated plasma flows away from the pulsar magnetosphere. A part of the plasma electrons returns and, being accelerated towards the star, regenerate the plasma by their curvature radiation. It is shown that plasma production near the star causes an appearance of positron and electron equatorial belts. The plasma concentration and the flux of the returning electrons are estimated. The portion of the energy entering into the pulsar magnetosphere and its dependence on pulsar parameters are estimated.  相似文献   

2.
The analysis of observations of pulsar B1931+24 shows that the mechanism of the spin-down of a rotating magnetized neutron star is due to the plasma generation in its magnetosphere and, consequently, the radio emission generation. The unique observation of the switch on and switch off of this pulsar allows us to distinguish between the energy loss in the absence of radio emission (the magnetodipole radiation) and the current loss due to the rotation energy expenditure to the relativistic plasma generation and acceleration in the pulsar magnetosphere. The inclination angle χ, the angle between the rotation axis and the magnetic dipole axis, can be stationary for this pulsar,  χ=χst  . From observations and theory it follows that  χst= 59°  .  相似文献   

3.
Plasma mechanism for the generation of toroidal magnetic field in the magnetosphere of Crab pulsar is presented. The mechanism is based on the development of parametric type instability in the relativistic electron-positron plasma of the pulsar magnetosphere. As a result of plasma corotation with pulsar and its magnetic field, the effect of plasma radial braking takes place and the time dependence of plasma particle radial velocity is harmonic. This triggers the development of parametric type instability in the relativistic plasma of the pulsar magnetosphere. The energy for this process is drawn from the slowing down of pulsar rotation.  相似文献   

4.
A set of equations which governs the nonlinear dynamics of drift–Alfvén waves in an inhomogeneous relativistic electron-positron plasma with a small admixture of heavy ions is derived. It is shown that these equations admit a stationary solution in the form of a two-scale dipolar vortex. The conditions for the existence of such structures are discussed. It is shown that the presence of heavy ions in are lativistic electron-positron plasma significantly reinforces the spatial localization of the solitary waves which results in the appearance of exponentially localized vortex structures. It is also shown that the small scale micropulse structure of radio pulsar radiation (e.g., in the case of the pulsar PSR 0905+08) can be interpreted as a signature of the vortex structure in the outer region of the pulsar polar magnetosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The magnetospheres around neutron stars should be very particular because of their strong magnetic field and rapid rotation. A study of the pulsar magnetospheres is of crucial importance since it is the key issue to understand how energy outflow to the exterior is produced. In this paper, we discuss magnetohydrodynamic processes in the pulsar magnetosphere. We consider in detail the properties of magnetohydrodynamic waves that can exist in the magnetosphere and their instabilities. These instabilities lead to formation of magnetic structures and can be responsible for short-term variability of the pulsar emission.  相似文献   

6.
The equations to the steady, axisymmetric, charged pulsar magnetosphere given recently by Michel (1973a, b) and Scharlemann and Wagoner (1972, preprint) are generalized to non-axisymmetric systems that are steady in the frame rotating with the pulsar. It is shown that in all nonsingular models with cylindrical (but not axial) symmetry, and with a non-zero magnetic field component parallel to the axis, the magnetic field lines emanating from the pulsar are all trapped within the light-cylinder, so that there is no net electromagnetic energy flow across the light cylinder.  相似文献   

7.
A set of coupled nonlinear differential equations which govern the dynamics of finite amplitude electromagnetic waves in the presence of an external current gradient in a magnetized electron-positron plasma has been derived. It is shown that the current gradient can make shear Alfvén-like waves unstable. A quasi-stationary solution of the mode-coupling equations is the well-localized dipole vortex. Application of our results to plasma transport in the pulsar magnetosphere is briefly discussed.  相似文献   

8.
Pulsars are presently believed to be rotating neutron stars with large frozen-in magnetic fields normally assumed to be dipole fields. It has been shown that such a star must possess a magnetosphere if it rotates sufficiently rapidly. By assuming that the magnetic field is dipolar, and unaffected by the trapped particles in the magnetosphere, and that the field dipole axis is parallel to the rotation axis, Goldreich and Julian determined many of the properties of the magnetosphere. In this paper is given a self-consistent model of the closed field lines of a pulsar magnetosphere. Using this model, it is shown that, close to the star, the above assumptions of Goldreich and Julian are justified. Their results are extended to the oblique rotator as well as to stars with magnetic multipoles of arbitrary order and arbitrary orientation.Supported in part by the U.S. Atomic Energy Commission under Grant 2171T.  相似文献   

9.
The motion of charged particles in a pulsar magnetosphere is examined in the present paper. Using the non-relativistic approximation, the trajectories of the charged particles are investigated qualitativley both in the case of axial and in the case of incline rotator. The obtained results can be used for the construction of the pulsar magnetosphere.  相似文献   

10.
It is shown that induced Raman scattering of electromagnetic waves in the strongly magnetized electron–positron plasma of pulsar magnetospheres may be important for wave propagation and as an effective saturation mechanism for electromagnetic instabilities. The frequencies at which strong Raman scattering occurs in the outer parts of a magnetosphere fall into the observed radio band. The typical threshold intensities for the strong Raman scattering are of the order of the observed intensities, implying that pulsar magnetospheres may be optically thick to Raman scattering of electromagnetic waves.  相似文献   

11.
Quantum electrodynamics(QED) effects may be included in physical processes of magnetar and pulsar magnetospheres with strong magnetic fields. Involving the quantum corrections, Maxwell electrodynamics is modified to nonlinear electrodynamics. In this work, we study the force-free magnetosphere in nonlinear electrodynamics in a general framework. The pulsar equation describing a steady and axisymmetric magnetosphere is derived, which now admits solutions with corrections. We derive the first-order nonlinear corrections to the near-zone dipole magnetosphere in some popular nonlinear effective theories.The field lines of the corrected dipole tend to converge on the rotational axis so that the fields in the polar region are stronger compared to the pure dipole case.  相似文献   

12.
We consider the polarization behaviour of radio waves propagating through an ultrarelativistic highly magnetized electron-positron plasma in a pulsar magnetosphere. The rotation of magnetosphere gives rise to the wave mode coupling in the polarization-limiting region. The process is shown to cause considerable circular polarization in the linearly polarized normal waves. Thus, the circular polarization observed for a number of pulsars, despite the linear polarization of the emitted normal waves, can be attributed to the limiting-polarization effect. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The self-consistent balanced pulsar magnetosphere of a magnetic neutron star with aligned magnetic and rotational axes is considered. It is shown that the magnetosphere consists of electron polar caps separated by empty space from a positron equatorial belt. The shape of the cold polar caps at a large distance from the star is calculated. It is shown that the cap shape at a large distance is independent of the magnetospheric structure near the neutron star. The shape of the equatorial belt is calculated. It is shown that a part of the equatorial belt rotates differentially, and its angular velocity is larger than that of the star (superrotation). It is shown that under certain conditions the space charge density of the belt can be very large. In principle, the formation of a surface charge placed in vacuum on a magnetic surface is possible. Magnetospheric vibrations are considered. A connection is established between drifting subpulses and the equatorial belt superrotation and also between drifting subpulses and cap vibrations. The characteristic frequency of vibrations and the angular velocity of superrotation are estimated.  相似文献   

14.
Equations governing the coupling of the scalar and vector potentials for a resistive electron-positron plasma in a strong magnetic field are derived. It is shown that in the presence of magnetic shear, a tearing instability may occur. The latter can lead to magnetic field line reconnection and the formation of magnetic islands which could affect the dynamics of the pulsar magnetosphere.  相似文献   

15.
Nonlinear propagation of electrostatic modes in ultrarelativistic dense elelectron-positron gravito-plasma at the polar cap region of pulsar magnetosphere is considered. A nonlinear Schrödinger equation is obtained from the reductive perturbation method which predicts the existence of Langmuir dark solitons. Relevance of the propagating dark solitons to the pulsar radio emission is discussed.  相似文献   

16.
本文讨论了脉冲星的磁层运动和能量状态。对于满足一定条件的脉冲星系统,证明了在极轴处的等离子体的角速度和电荷密度趋于零。提出了一个磁层与星体非共转的简单模型以及边界条件。利用变分原理,求得参数值,从而,得出了与参数相关的各个物理量,例如:等离子体的漂移速度v_D,等离子体与星体的相对滑动速度v_s,脉冲星的输出功率等。结果表明:功率值比较接近观测值,非共转的模型相对通常采用的共转模型而言是比较合理的。  相似文献   

17.
A plasma emission model is presented interpreting the observational properties of RX J1856.5-3754. In particular, on the basis of the Vlasov’s kinetic equation we study the process of the quasi-linear diffusion (QLD) developed by means of the cyclotron instability. This mechanism provides simultaneous generation of optical and X-ray emission on the light cylinder scales, in one location of the pulsar magnetosphere. It is assumed that the observed X-ray spectrum of this source is generated via the synchrotron mechanism. A different approach of the synchrotron theory is considered, giving a spectral energy distribution that is in a good agreement with the observational data.  相似文献   

18.
We study the concept of radius-to-frequency mapping using a geometrical method for the estimation of pulsar emission altitudes. The semi-empirical relationship proposed by Kijak &38; Gil is examined over three decades of radio frequency. It is argued that the emission region in a millisecond pulsar occupies the magnetosphere over a distance of up to about 30 per cent of the light-cylinder radius, and that in a normal pulsar occupies up to approximately 10 per cent of the light-cylinder radius.  相似文献   

19.
Pulsar “standard model”, that considers a pulsar as a rotating magnetized conducting sphere surrounded by plasma, is generalized to the case of oscillating star. We developed an algorithm for calculation of the Goldreich-Julian charge density for this case. We consider distortion of the accelerating zone in the polar cap of pulsar by neutron star oscillations. It is shown that for oscillation modes with high harmonic numbers (l,m) changes in the Goldreich-Julian charge density caused by pulsations of neutron star could lead to significant altering of an accelerating electric field in the polar cap of pulsar. In the moderately optimistic scenario, that assumes excitation of the neutron star oscillations by glitches, it could be possible to detect altering of the pulsar radioemission due to modulation of the accelerating field. This work was partially supported by RFBR grant 04-02-16720, and by the grants N.Sh.-5218.2006.2 and RNP-2.1.1.5940.  相似文献   

20.
A theory of the relaxation of pulsar angular velocity is compared with observational data for the first eight glitches of the Vela pulsar. The inverse problem of the theory of relaxation is considered and solutions of this problem in the regions of exponential and linear relaxation are found. General features in the distribution of neutron vortices in these regions immediately after a glitch are determined. It is shown that these properties may be related to the size of the glitch in pulsar angular velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号