首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium abundances and isotope compositions are presented for a suite of sediments from the surroundings of the Ries Impact structure, paralleled by new Li data for central European tektites (moldavites) from several substrewn fields (South Bohemia, Moravia, Cheb Basin, Lusatia), including a specimen from the newly discovered substrewn field in Poland. The data set was supplemented by three clay fractions isolated from sedimentary samples. Moldavites measured in this study show a very narrow range in δ7Li values (?0.6 to 0.3‰ relative to L‐SVEC) and Li contents (23.9–48.1 ppm). This contrasts with sediments from the Ries area which show remarkable range in Li isotope compositions (from ?6.9 to 13.4‰) and Li contents (0.6–256 ppm). The OSM sediments which, based on chemical similarity, formed the major part of moldavites, show a range in δ7Li values from ?2.0 to 7.9‰ and Li contents from 5.8 to 78.9 ppm. Therefore, the formation of moldavites was apparently accompanied by large‐scale mixing, paralleled by chemical and isotope homogenization of their parent matter. The proposed Li mixing model indicates that sands, clayey sediments, and low volumes of carbonates are the major components for tektite formation whereas residual paleokarst sediments could have been a minor but important component for a subset of moldavites. Striking homogenization of Li in tektites, combined with limited Li loss during impacts, may suggest that moderately volatile elements are not scavenged and isotopically fractionated during large‐scale collisions, which is consistent with recent models. In general, whether homogenization of bodies with distinct Li isotope systematics takes place, or collision of bodies with similar Li systematics operates cannot be resolved at present stage but Li isotope homogeneity of solar system planets and asteroidal bodies tentatively implies the latter.  相似文献   

2.
Moldavites are tektites genetically related to the Ries impact structure, located in Central Europe, but the source materials and the processes related to the chemical fractionation of moldavites are not fully constrained. To further understand moldavite genesis, the Cu and Zn abundances and isotope compositions were measured in a suite of tektites from four different substrewn fields (South Bohemia, Moravia, Cheb Basin, Lusatia) and chemically diverse sediments from the surroundings of the Ries impact structure. Moldavites are slightly depleted in Zn (~10–20%) and distinctly depleted in Cu (>90%) relative to supposed sedimentary precursors. Moreover, the moldavites show a wide range in δ66Zn values between 1.7 and 3.7‰ (relative to JMC 3‐0749 Lyon) and δ65Cu values between 1.6 and 12.5‰ (relative to NIST SRM 976) and are thus enriched in heavy isotopes relative to their possible parent sedimentary sources (δ66Zn = ?0.07 to +0.64‰; δ65Cu = ?0.4 to +0.7‰). In particular, the Cheb Basin moldavites show some of the highest δ65Cu values (up to 12.5‰) ever observed in natural samples. The relative magnitude of isotope fractionation for Cu and Zn seen here is opposite to oxygen‐poor environments such as the Moon where Zn is significantly more isotopically fractionated than Cu. One possibility is that monovalent Cu diffuses faster than divalent Zn in the reduced melt and diffusion will not affect the extent of Zn isotope fractionation. These observations imply that the capability of forming a redox environment may aid in volatilizing some elements, accompanied by isotope fractionation, during the impact process. The greater extent of elemental depletion, coupled with isotope fractionation of more refractory Cu relative to Zn, may also hinge on the presence of carbonyl species of transition metals and electromagnetic charge, which could exist in the impact‐induced high‐velocity jet of vapor and melts.  相似文献   

3.
Abstract— Thirteen phosphate minerals are found in IIIAB iron meteorites. Four of these (sarcopside, graftonite, johnsomervilleite, and galileiite) constitute the majority of occurrences. The IIIB iron meteorites are confined to occurrences of only these four phosphates. The IIIA iron meteorites may contain one or more of these four phases; they may also contain other rarer phosphates, and silica (in two instances) and a silicate rock (in one instance). Thus, the IIIA lithophile chemistry is more varied than that of the IIIB meteorites. Based on petrographic relations, sarcopside appears to be the first phosphate to form. Graftonite is probably formed by recrystallization of sarcopside. Johnsomervilleite and galileiite exsolved as enclaves in sarcopside or graftonite at lower temperatures, although some of these also nucleated as separate crystals. The IIIAB phosphates are carriers of a group of incompatible lithophile elements: Fe, Mn, Na, Ca, and K, and, rarely, Mg as well as Pb. These elements (and O) were concentrated in a residual, S-rich liquid during igneous fractional crystallization of the IIIAB core mass. The phosphates formed by oxidation of P as the core solidified and excluded O, which increased its partial pressure in the residual liquid. The trace siderophile trends in bulk IIIAB metal are paralleled by a mineralogical trend of the phosphate minerals that formed. For IIIAB meteorites with low-Ir contents in the metal, the phosphates are mainly Fe-Mn phases; at intermediate Ir values, more Na-bearing phosphates appear; at the highest Ir values, the rarer Na-, K-, Mg-, Cr-, and Pb-bearing phosphates appear. The absence of significant amounts of Mg, Si, Al, and Ti suggest depletion of these elements in the core by the overlying mantle.  相似文献   

4.
New bulk chemical analyses are given of Aubres, Bishopville, Bustee, Khor Temiki, Norton County, Peña Blanca Spring and Shallowater, Selective attack by dry chlorine (350°C) on magnetic and non-magnetic fractions was used to determine the distribution of some normally lithophile elements (Al, Ca, Cr, K, Mg, Mn, Na, P and Ti) between silicate and sulphide groups of minerals.  相似文献   

5.
Abstract— Several moldavites have been discovered in the northern part of Lower Austria. Tektites from two new locations (Altenburg and Radessen) have been analyzed. These new finds lend credibility to old reports about tektites from Lower Austria, some of which are associated with artefacts of prehistoric cultures. The new locations are situated between the Bohemian and Moravian parts of the moldavite strewn field, which is thus shown to extend further south than previously known. Most of the samples show clear indications of surface alterations by water and/or humic substances, and one sample shows signs of fluviatile transport. The geological setting of the moldavite-bearing sediments is similar to the Czechoslovakian occurrences but is probably less disturbed. Chemically the samples show considerable variations even within one location. No unambiguous association with either the Bohemian or the Moravian group is evident either for the major or trace element abundances.  相似文献   

6.
Abstract— 40Ar/39Ar ages of four tektites (moldavites) from southern Bohemia (near ?eské Budějovice, Czech Republic) and a tektite from Lusatia (near Dresden, Germany) have been determined by 11 step‐degassing experiments. The purpose of the study was to enlarge the 40Ar/39Ar data base of moldavites and to check the age relations of the Bohemian and Lusatian samples. The mean plateau‐age of the Bohemian samples, which range from 14.42 to 14.70 Ma, is 14.50 ± 0.16 (0.42) (2σ) Ma (errors in parentheses include age error and uncertainty of standard monitor age). The plateau age of the Lusatian sample of 14.38 ± 0.26 (0.44) (2σ) Ma confirms the previously published 40Ar/39Ar age of 14.52 ± 0.08 (0.40) (2σ) Ma, and demonstrates that the fall of Lusatian and Bohemian tektites were contemporaneous. Because of their geochemistry and their ages there is no doubt that the Lusatian tektites are moldavites. Accepting that moldavites are ejecta from the Nördlinger Ries impact, the new ages also date the impact event. This age is slightly younger (about 0.2–0.3 Ma) than the age suggested by earlier K‐Ar determinations.  相似文献   

7.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

8.
Moldavites represent tektites derived from the Ries impact structure (~24 km diameter, ~15 Myr old) in southern Germany. Two new localities with parautochthonous moldavites in southwestern Poland were found. In these localities, fluvial sediments of the so‐called Gozdnicka formation host the moldavites. Characteristic tektite features, especially bubbles and inclusions of lechatelierite, are reported. The moldavites' size distribution and their abraded shapes indicate that they were redeposited from the nearby Lusatia substrewn field.  相似文献   

9.
In order to investigate the volatilities of major and minor lithophile elements, evaporation experiments by electron bombardment were carried out employing basaltic rock powder. The elements studied included Al, Fe, Ca, Mg, Mn, Na, K, Rb, Ba and REE. The source crucible was heated to about 2300 °K, and the vaporized material was collected at different distances from the source. The enrichment factors of studied elements in the material collected on the condensation plate were calculated relative to the starting material. Patterns of REE removed during flights between varying distances were also evaluated.  相似文献   

10.
A systematic study of a large set of moldavites and the application of cathodoluminescence (CL)‐spectroscopy with a detailed discussion of spectral features is presented. Optical CL microscopy and spectroscopy (OM‐CL) were performed on 57 moldavite samples from different substrewn‐fields in Germany and the Czech Republic. The extracted CL data were supported by SEM‐EDX analysis. In general, two different kinds of CL colors can be distinguished: different shades of green in the matrix of the tektite glasses and a variation of blue color for lechatelierite inclusions (a pure silica‐glass phase). Spectral analysis of these colors shows three CL emission bands for green and five bands for blue c. Most CL activators are structural defects of the local glass network, influenced by the crystal field. The visible green CL emission is caused by defects related to strong local disorder as well as Al‐O?‐Al defects. The blue CL emission is activated by different types of lattice defects such as nonbridging oxygen‐hole center (NBOHC), self‐trapped excitons (STE), and oxygen deficiency centers (ODC). Intensity variations of the CL emissions were observed for samples from the different localities, but there is no direct correlation between substrewn‐fields and CL characteristics. Nevertheless, CL microscopy is a powerful tool for the high‐contrast visualization of internal textures such as streaks and lechatelierite in the tektite matrix due to the luminescence properties of the defect structures in the glassy network.  相似文献   

11.
Abstract— Yamato 82042 is an unusual CM2 chondrite consisting mainly of phyllosilicates, a few olivines and carbonates, very minor sulphides and trace metal. Olivine occurs: (1) as isolated grains dispersed in the phyllosilicate matrix, (2) as constituents of mineral aggregates or accretionary fragments associated with abundant phyllosilicates and minor sulphides, and (3) as objects which resemble barred olivine chondrules also associated with phyllosilicates. Olivine, from all occurrences, ranges in composition from 0.26 to 22.6 weight % FeO, but generally contains less than 1.25 wt.% FeO. Minor element contents, particularly Ca, Al, and Cr, are relatively high and are generally correlated, as reported for olivines in other carbonaceous chondrites. However, we report here uncorrected trends for the same minor elements which occur in distinct areas (volumes) within the same olivines. These compositional trends may be due to condensation of olivine from a vapor of non-solar composition and partial mobilization of Ca during later annealing. If this is the case, the data may be used to trace changes in the Ca/Al ratio of the parent medium during the formation of these olivines, provided that it is possible to distinguish the effects of any post-formation annealing which could have redistributed the minor elements. Some isolated olivines show distinctive minor element zoning which severely limits the possibility of any post-formation redistribution of these elements. Accordingly, these isolated olivines indeed retain evidence of early condensation processes in the solar nebula, though non-classic conditions are implied for their formation.  相似文献   

12.
Abstract— Amoeboid olivine aggregates (AOAs) from the reduced CV chondrites Efremovka, Leoville and Vigarano are irregularly‐shaped objects, up to 5 mm in size, composed of forsteritic olivine (Fa<10) and a refractory, Ca, Al‐rich component. The AOAs are depleted in moderately volatile elements (Mn, Cr, Na, K), Fe, Ni‐metal and sulfides and contain no low‐Ca pyroxene. The refractory component consists of fine‐grained calcium‐aluminum‐rich inclusions (CAIs) composed of Al‐diopside, anorthite (An100), and magnesium‐rich spinel (~1 wt% FeO) or fine‐grained intergrowths of these minerals; secondary nepheline and sodalite are very minor. This indicates that AOAs from the reduced CV chondrites are more pristine than those from the oxidized CV chondrites Allende and Mokoia. Although AOAs from the reduced CV chondrites show evidence for high‐temperature nebular annealing (e.g., forsterite grain boundaries form 120° triple junctions) and possibly a minor degree of melting of Al‐diopside‐anorthite materials, none of the AOAs studied appear to have experienced extensive (>50%) melting. We infer that AOAs are aggregates of high‐temperature nebular condensates, which formed in CAI‐forming regions, and that they were absent from chondrule‐forming regions at the time of chondrule formation. The absence of low‐Ca pyroxene and depletion in moderately volatile elements (Mn, Cr, Na, K) suggest that AOAs were either removed from CAI‐forming regions prior to condensation of these elements and low‐Ca pyroxene or gas‐solid condensation of low‐Ca‐pyroxene was kinetically inhibited.  相似文献   

13.
The type III carbonaceous chondrites Kainsaz and Efremovka have been analysed for eighteen major, minor and trace elements by X-ray fluorescence spectrometry. A comparison of the data on Kainsaz with four other Ornans sub-type carbonaceous chondrites reveals a remarkable degree of constancy of composition. Efremovka, together with Leoville and Coolidge, may be distinguished from the other Vigarano sub-type carbonaceous chondrites by their lower Na and K contents, variable Na/K ratios and relatively low Ca/Al ratios. Some observations are made on the ratio Na/K in various types of stony meteorite; the magnitude of the ratio in the basaltic achondrites appears to be more similar to that in the carbonaceous chondrites than in the ordinary chondrites.  相似文献   

14.
Abstract— A new 40Ar/39Ar data set is presented for tektites from the Central European strewn field (moldavites). This is the only strewn field that is entirely situated in a continental environment and still characterized by scattered ages (14–15.3 Myr). The main objectives of the study were to define more precisely the moldavite formation age and provide a good calibration for a glass standard proposed for fission‐track dating. The laser total fusion ages obtained on chips from 7 individual specimens from the Southern Bohemian and Moravian subfields are restricted to a narrow interval of time, with an average of 14.34 ± 0.08 Myr relative to the 27.95 ± 0.09 Myr of the Fish Canyon Tuff biotite. This result gives a more precise age not only for the tektite field but also for its producing impact. If the genetic link between the moldavites and the Nördlinger Ries impact crater is maintained, then this new age has to be considered a reliable estimate for the Ries crater also. This new value places the formation of Central European tektites within the Lower Serravallian period in the latest geologic timescales. Evidence of their impact products, such as glass spherules or shocked minerals, can, therefore, be sought in sedimentary marine formations in a more precisely defined age interval.  相似文献   

15.
The electrical conductivity and water soluble Na, K, Ca, and Mg of aqueous solutions of terrestrial soils and finely divided igneous and metamorphic rocks were determined. Soils from dry terrestrial basins with a history of water accumulation as well as soils from the topographic lows of valleys accumulated water soluble cations, particularly Na and Ca. These soils as a group can be distinguished from the rocks or a second group of soils (leached upland soils and soils from sites other than the topographic lows of valleys) by significant differences in their mean electrical conductivity and water soluble Na + Ca content. Similar measurements on multiple samples from the surface of Mars, collected by an automated long-range roving vehicle along a highlands to basin transect at sites with morphological features resembling dry riverlike channels, are suggested to determine the fluvial history of the planet.  相似文献   

16.
Abstract— Laboratory dissolution experiments using the LL6 ordinary chondrite Bensour demonstrate that meteoritic minerals readily react with distilled water at low temperatures, liberating ions into solution and forming reaction products. Three experiments were performed, all for 68 days and at atmospheric fO2 but using a range of water/rock ratios and different temperatures. Experiments 1 and 2 were batch experiments and undertaken at room temperature, whereas in experiment 3, condensed boiling water was dripped onto meteorite subsamples within a Soxhlet extractor. Solutions from experiment 1 were chemically analyzed at the end of the experiment, whereas aliquots were extracted from experiments 2 and 3 for analysis at regular intervals. In all three experiments, a very significant proportion of the Na, Cl, and K within the Bensour subsamples entered solution, demonstrating that chlorapatite and feldspar were especially susceptible to dissolution. Concentrations of Mg, Al, Si, Ca, and Fe in solution were strongly affected by the precipitation of reaction products and Mg and Ca may also have been removed by sorption. Calculations predict saturation of experimental solutions with respect to Al hydroxides, Fe oxides, and Fe (oxy)hydroxides, which would have frequently been accompanied by hydrous aluminosilicates. Some reaction products were identified and include silica, a Mg‐rich silicate, Fe oxides, and Fe (oxy)hydroxides. The implications of these results are that even very short periods of subaerial exposure of ordinary chondrites will lead to dissolution of primary minerals and crystallization of weathering products that are likely to include aluminosilicates and silicates, Mg‐Ca carbonates, and sulfates in addition to the ubiquitous Fe oxides and (oxy)hydroxides.  相似文献   

17.
We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations—relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10?3 to 10?2 concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater‐type fluid formed impure sulfate‐ and silica‐rich deposits—veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate‐rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.  相似文献   

18.
High dispersion photographic spectra of three Leonid and five Perseid meteors are used to derive relative abundances of nine chemical elements in the radiating meteoric vapors and in the meteoroids. Al and Ca were found to be incompletely evaporated in the main spectral component at 5000 K but completely evaporated in the second component at 10,000 K. Si lines are present in both components which enhances the reliability of determination of the Si abundance. The composition of the meteoroids was found to be more similar to comet Halley than to chondritic meteoroids. Fe, Cr, and Mn are depleted and Si, Na, and H are enhanced relative to Mg in comparison with CI chondrites.  相似文献   

19.
The abundances of the light (Na to Ca) elements in disc and halo stars are reviewed. New analyses are emphasized. Elements considered are the α-nuclei (Mg, Si, and Ca), and the odd-even nuclei (Na and Al, also25Mg and26Mg). The α-nuclei are overabundant (relative to Fe) in the old disc and halo stars. Halo stars ([Fe/H] < —1.2) have [α/Fe] ∼0.3 with extreme halo ([Fe/H] ≲ −2.0) stars showing possibly higher overabundances. The scatter in [α/Fe] at a given [Fe/H] is small. To within the observational errors, the abundance patterns for Mg, Si, and Ca are identical. For disc stars, the Na and Al abundances relative to Mg are almost independent of the [Fe/H]. Halo stars ([Fe/H] < −1) show [Na/Mg] < 0 and [AI/Mg] < 0, but the form of the mean relation and the scatter about the relation between [odd-even/Mg] and [Fe/H] remains uncertain.  相似文献   

20.
Abstract– We have analyzed eleven presolar SiC grains from the Murchison meteorite using time‐of‐flight secondary ion mass spectrometry. The Si isotopic compositions of the grains indicate that they are probably of an AGB star origin. The average abundances of Mg, Fe, Ca, Al, Ti, and V are strongly influenced by their condensation behavior into SiC in circumstellar environments. Depth profiles of Li, B, Mg, Al, K, Ca, Ti, V, Cr, and Fe in the SiC grains show that trace elements are not always homogenously distributed. In approximately half of the SiC grains studied here, the trace element distributions can be explained by condensation processes around the grains’ parent stars. These grains appear to have experienced only minimal processing before their arrival in the presolar molecular cloud, possibly due to short residence times in the interstellar medium. The remaining SiC grains contained elevated abundances of several elements within their outer 200 nm, which is attributed to the implantation of energetic ions accelerated by shockwaves in the interstellar medium. These grains may have spent a longer period of time in this region, hence increasing the probability of them passing through a shockfront. Distinct groups of presolar SiC grains whose residence times in the interstellar medium differ are consistent with previous findings based on noble gas studies, although some grains may also have been shielded from secondary alteration by protective outer mantles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号