首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early-time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51) are reported. Photometric data suggest that SN 2005cs is a moderately underluminous Type II plateau SN (SN IIP). The SN was unusually blue at early epochs (   U − B ≈−0.9  about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He  i 5876-Å absorption component and, less clearly, of Hβ and Hα. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high-velocity H and He  i components, or (more likely) be produced by different ions (N  ii , Si  ii ). Analogies with the low-luminosity, 56Ni-poor, low-velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.  相似文献   

2.
We present the results of the one-year long observational campaign of the type II plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low-luminosity, 56Ni-poor type II plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about  1000 km s−1  ) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 d after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 d. In addition to optical observations, we also present near-infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about  3 × 10−3 M  , a total ejected mass of  8–13 M  and an explosion energy of about  3 × 1050 erg  .  相似文献   

3.
We present photometric and spectroscopic data of the Type II-P supernova (SN II-P) 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first Type II supernova (SN) to have a directly confirmed red supergiant (RSG) progenitor. We compare SN 2003gd to SN 1999em, a similar SN II-P, and estimate an explosion date of 2003 March 18. We determine a reddening towards the SN of   E ( B − V ) = 0.14 ± 0.06  , using three different methods. We also calculate three new distances to M74 of  9.6 ± 2.8, 7.7 ± 1.7  and  9.6 ± 2.2 Mpc  . The former was estimated using the standard candle method (SCM), for Type II supernovae (SNe II), and the latter two using the brightest supergiants method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of  9.3 ± 1.8 Mpc  . SN 2003gd was found to have a lower tail luminosity compared with other normal Type II-P supernovae (SNe II-P) bringing into question the nature of this SN. We present a discussion concluding that this is a normal SN II-P, which is consistent with the observed progenitor mass of  8+4−2 M  .  相似文献   

4.
We report the detection of a very narrow P Cygni profile on top of the broad emission H α and H β lines of the Type IIn Supernova 1997eg. A similar feature has been detected in SN 1997ab, SN 1998S and SN 1995G . The detection of the narrow P Cygni profile indicates the existence of a dense circumstellar material (CSM), into which the ejecta of the supernova is expanding. From the analysis of the spectra of SN 1997eg we deduce (i) that such CSM is very dense  ( n ≳5×107 cm-3)  , (ii) that it has a low expanding velocity of about 160 km s−1. The origin of such dense CSM can be either a very dense progenitor wind  ( M˙ ∼10-2 M yr-1)  or a circumstellar shell product of the progenitor wind expanding into a high-pressure environment.  相似文献   

5.
Modelling of high-resolution Balmer line profiles in the early-time spectra of SN 1998S shows that the inferred fast (≈400 km s−1) circumstellar (CS) gas on days 23 and 42 post-explosion is confined to a narrow, negative velocity gradient shell just above the photosphere. This gas may be identified with a slow  (v<40 km s−1)  progenitor wind accelerated at the ejecta–wind interface. In this scenario, the photosphere coincides with a cool dense shell formed in the reverse shock. Acceleration by radiation from the supernova or by a shock-accelerated relativistic particle precursor are both possible explanations for the observed fast CS gas. An alternative, equally plausible scenario is that the fast CS gas is accelerated within shocked clouds engulfed by the outer shock, as it propagates through the intercloud wind.  相似文献   

6.
7.
Recent evidence of a young progenitor population for many Type Ia supernovae (SNe Ia) raises the possibility that evolved intermediate-mass progenitor stars may be detected in pre-explosion images. NGC 1316, a radio galaxy in the Fornax cluster, is a prolific producer of SNe Ia, with four detected since 1980. We analyse Hubble Space Telescope ( HST ) pre-explosion images of the sites of two of the SNe Ia that exploded in this galaxy, SN2006dd (a normal Type Ia) and SN2006mr (likely a subluminous, 1991bg-like, SN Ia). Astrometric positions are obtained from optical and near-infrared ground-based images of the events. We find no candidate point sources at either location, and set upper limits on the flux in B, V and I from any such progenitors. We also estimate the amount of extinction that could be present, based on analysis of the surface-brightness inhomogeneities in the HST images themselves. At the distance of NGC 1316, the limits correspond to absolute magnitudes of  ∼−5.5, −5.4  and −6.0 mag in   M B , M V   and   M I   , respectively. Comparison to stellar evolution models argues against the presence at the supernova sites, 3 yr prior to the explosion, of normal stars with initial masses  ≳6 M  at the tip of their asymptotic-giant branch (AGB) evolution, young post-AGB stars that had initial masses  ≳4 M  and post-red giant stars of initial masses  ≳9 M  .  相似文献   

8.
We present X-ray, broad-band optical and low-frequency radio observations of the bright type IIP supernova SN 2004et. The Chandra X-ray Observatory observed the supernova at three epochs, and the optical coverage spans a period of ∼470 d since explosion. The X-ray emission softens with time, and we characterize the X-ray luminosity evolution as   L X∝ t −0.4  . We use the observed X-ray luminosity to estimate a mass-loss rate for the progenitor star of  ∼2 × 10−6 M yr−1  . The optical light curve shows a pronounced plateau lasting for about 110 d. Temporal evolution of photospheric radius and colour temperature during the plateau phase is determined by making blackbody fits. We estimate the ejected mass of 56Ni to be  0.06 ± 0.03 M  . Using the expressions of Litvinova & Nadëzhin we estimate an explosion energy of  (0.98 ± 0.25) × 1051 erg  . We also present a single epoch radio observation of SN 2004et. We compare this with the predictions of the model proposed by Chevalier, Fransson & Nymark. These multiwavelength studies suggest a main-sequence progenitor mass of  ∼20 M  for SN 2004et.  相似文献   

9.
We present near-infrared spectroscopic observations of SN 1987A covering the period 1358 to 3158 d post explosion. This is the first time that IR spectra of a supernova have been obtained to such late epochs. The spectra comprise emission from both the ejecta and the bright, ring-shaped circumstellar medium (CSM). The most prominent CSM emission lines are recombination lines of H  i and He  i , and forbidden lines of [S  iii ] and [Fe  ii ]. The ejecta spectra include allowed lines of H  i , He  i and Na  i and forbidden lines of [Si  i ], [Fe  i ], [Fe  ii ] and possibly [S  i ]. The intensity ratios and widths of the H  i ejecta lines are consistent with a low-temperature Case B recombination spectrum arising from non-thermal ionization/excitation in an extended, adiabatically-cooled H envelope, as predicted by several authors. The slow decline of the ejecta forbidden lines, especially those of [Si  i ], indicates that pure non-thermal excitation was taking place, driven increasingly by the decay of 44Ti. The ejecta iron exhibits particularly high velocities  (4000–4500 km s-1)  , supporting scenarios where fast radioactive nickel is created and ejected just after the core bounce. In addition, the ejecta lines continue to exhibit blueshifts with values ∼−200 to −800 km s−1 to at least day 2000. These blueshifts, which first appeared around day 600, probably indicate that very dense concentrations of dust persist in the ejecta, although an alternative explanation of asymmetry in the excitation conditions is not ruled out.  相似文献   

10.
The search for the progenitors of six core-collapse supernovae (CCSNe) in archival Hubble Space Telescope ( HST ) WFPC2 pre-explosion imaging is presented. These SNe are 1999an, 1999br, 1999ev, 2000ds, 2000ew and 2001B. Post-explosion imaging of the SNe, with the HST ACS/WFC, has been utilized with the technique of differential astrometry to identify the progenitor locations on the pre-explosion imaging. SNe 1999br, 1999ev, 2000ew and 2001B are recovered in late-time imaging, and estimates of the progenitor locations on the pre-explosion imaging, with subpixel accuracy, have been made. Only the progenitor of the Type II-P SN 1999ev has been recovered, on pre-explosion F555W imaging, at a 4.8σ significance level. Assuming a red supergiant progenitor, the pre-explosion observation is consistent with   M ZAMS= 15–18 M  . The progenitors of the other five SNe were below the 3σ detection threshold of the pre-explosion observations. The detection thresholds were translated to mass limits for the progenitors by comparison with stellar evolution models. Pre-explosion observations of the peculiarly faint SN 1999br limit the mass of a red supergiant progenitor to   M ZAMS < 12 M  . Analysis has been extended, from previous studies, to include possible detections of high- T eff, high-mass stars by conducting synthetic photometry of model Wolf–Rayet star spectra. The mass limits for the Type II-P SNe 1999an and 1999br are consistent with previously determined mass limits for this type of SN. The detection limits for the progenitors of the Type Ibc SNe (2000ds, 2000ew and 2001B) do not permit differentiation between high-mass Wolf–Rayet progenitors or low-mass progenitors in binaries.  相似文献   

11.
Dust formation in primordial Type II supernovae   总被引:1,自引:0,他引:1  
We have investigated the formation of dust in the ejecta of Type II supernovae (SNe), mostly of primordial composition, to answer the question of where the first solid particles are formed in the Universe. However, we have also considered non-zero progenitor metallicity values up to Z = Z . The calculations are based on standard nucleation theory, and the scheme has been tested for the first time on the well-studied case of SN1987A, yielding results that are in agreement with the available data. We find that: (i) the first dust grains are predominantly made of silicates, amorphous carbon (AC), magnetite and corundum; and (ii) the largest grains are the AC ones, with sizes around 300 Å, whereas the other grain types have smaller radii, around 10–20 Å . The grain size distribution depends somewhat on the thermodynamics of the ejecta expansion, and variations in the results by a factor ≈2 might occur within reasonable estimates of the relevant parameters. Also, and for the same reason, the grain size distribution is essentially unaffected by metallicity changes. The predictions on the amount of dust formed are very robust: for Z =0 , we find that SNe with masses in the range (12–35) M produce about 0.08 M≲ M d≲0.3 M of dust per supernova. The above range increases by roughly three times as the metallicity is increased to solar values. We discuss the implications and the cosmological consequences of the results.  相似文献   

12.
UBVRIJ photometry and optical spectra of the type Ia SN 1996X obtained at the European Southern Observatory (ESO) during a 1-yr-long observational campaign are presented, and supplemented by late-time Hubble Space Telescope (HST) photometry. Spectroscopically, SN 1996X appears to be a 'normal' SN Ia. The apparent magnitude at maximum was     and the colour     The luminosity decline rate,     is close to average for a SN Ia. The best estimate of the galactic extinction is     and there is evidence that reddening within the parent galaxy is negligible.
Detailed comparison of the light and colour curves of various 'normal' SNe Ia shows that the assumption that multicolour light curves can be described simply as a one-parameter family is not perfect. Together with problems in the calibration of the templates, this may explain the discrepancies in the distance modulus derived adopting different calibrations of the absolute magnitude versus light-curve shape relations. Indeed, we found that M B ranges from −19.08 to −19.48 and μ ranges from 32.02 to 32.48 depending on the method used.
Computations of model light-curve and synthetic spectra for both early and late times confirm that 1996X is a normal type Ia SN and that a satisfactory fit can be obtained using a W7 progenitor structure only if we adopt the short distance. A larger distance would imply too large a Ni mass for this fainter than average SN Ia.  相似文献   

13.
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDS) produced by the interaction of the ejecta outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDS dust mass reaches a modest  3.0 × 10−4 M  by day 230. While dust condensation within a CDS formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDS formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least  ∼8 × 10−3 M  . This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.  相似文献   

14.
We present a new set of spectroscopic and photometric data extending the observations of SN 1997D to over 400 d after the explosion. These observations confirm the peculiar properties of SN 1997D, such as the very low abundance of 56Co (0.002 M) and the low expansion velocity of the ejecta (∼1000 km s−1). We discuss the implications of these observations for the character of the progenitor and the nature of the remnant, showing that a Crab-like pulsar or an accreting neutron star formed in the explosion of a low-mass progenitor should already have produced a detectable luminosity at this epoch, in contrast with photometric data. On the other hand, the explosion of a high-mass progenitor with the formation of a black hole is consistent with the available observations. The consequences of this conclusion regarding the nature of the explosion and the prospects of directly identifying the black hole are also addressed.  相似文献   

15.
Extensive photometric and spectroscopic observations of SN 1994aj until 540 d after maximum light have been obtained. The photometry around maximum suggests that the SN belongs to the Type II Linear class, with a peak absolute magnitude of M V∼−17.8 (assuming H 0=75 km s−1 Mpc−1). The spectra of SN 1994aj were unusual, with the presence of a narrow line with a P Cygni profile on top of the broad Balmer line emission. This narrow feature is attributed to the presence of a dense superwind surrounding the SN. At 100–120 d after maximum light the SN ejecta start to interact with this circumstellar material. The SN luminosity decline rates slowed down [γ R =0.46 mag (100 d)−1], becoming less steep than the average late luminosity decline of normal SN II [∼1 mag (100 d)−1]. This dense ( ˙M / u W∼1015 g cm−1) wind was confined to a short distance from the progenitor ( R out=∼5×1016 cm), and results from a very strong mass-loss episode ( ˙M =10−3 M⊙ yr−1), which terminated shortly before explosion (∼5–10 yr).  相似文献   

16.
A few Type Ia supernovae (SNe Ia) have been suggested to be an explosion of a super-Chandrasekhar-mass white dwarf (WD) in order to account for their large luminosities, requiring a large amount of 56Ni. However, the candidate overluminous SNe Ia 2003fg, 2006gz and (moderately overluminous) SN 1991T have very different observational features: the characteristic time-scale and velocity are very different. We examine if and how the diversity can be explained, by one-dimensional spherical radiation transport calculations covering a wide range of model parameters (e.g. WD mass). The observations of SN 2006gz are naturally explained by the super-Chandrasekhar-mass model. SN 1991T represents a marginal case, which may either be a Chandrasekhar or a super-Chandrasekhar-mass WD explosion. In contrast, the low velocity and short time-scale seen in SN 2003fg indicate that the ejecta mass is smaller than the Chandrasekhar mass, which is in apparent contradiction to the large luminosity. We suggest that the problem is solved if the progenitor WD, and thus the SN explosion, is aspherical. This may reflect a rapid rotation of the progenitor star, likely a consequence of the super-Chandrasekhar-mass WD progenitor. The observed differences between SNe 2003fg and 2006gz may be attributed to different viewing orientations.  相似文献   

17.
Supernova (SN) 2002ap in M74 was discovered on 2002 January 29. Being one of the nearest (10 Mpc) SN events in the last decades, and spectroscopically similar to the so-called 'hypernovae' 1997ef and 1998bw, both possibly associated with gamma-ray bursts (GRBs), it is of great interest. Shortly after its discovery, we launched an intensive photometric and spectroscopic monitoring campaign of this event, and here we report the results of the first month of observations. We use our UBVRI photometry to estimate the magnitudes at, and dates of, peak brightness. Our data suggest that this object reached its peak B -band luminosity on February     . Based on its similarity to SN 1998bw, we estimate the range of possible dates for a GRB that may have been associated with SN 2002ap. We find that it may include dates outside the time frame for which all available gamma-ray data have been intensively scanned, according to recent reports. The absolute magnitude at peak brightness of SN 2002ap  ( M B =-16.9)  shows that it was significantly fainter than SN 1998bw, or normal Type Ia SNe, but similar to SN 1997ef. Our spectroscopic observations confirm that SN 2002ap is strikingly similar to SNe 1998bw and 1997ef. We briefly describe the spectral evolution of this object. To assist other observers and to stimulate theoretical models, we make our entire data set publicly available in digital form (http://wise-obs.tau.ac.il/∼avishay/local.html).  相似文献   

18.
We present first-season infrared (IR) and optical photometry and spectroscopy of the Type Ia Supernova 1998bu in M96. We also report optical polarimetry of this event. SN 1998bu is one of the closest type Ia supernovae of modern times, and the distance of its host galaxy is well determined. We find that SN 1998bu is both photometrically and spectroscopically normal. However, the extinction to this event is unusually high, with     We find that SN 1998bu peaked at an intrinsic     Adopting a distance modulus of 30.25 (Tanvir et al.) and using Phillips et al.'s relations for the Hubble constant, we obtain     Combination of our IR photometry with those of Jha et al. provides one of the most complete early-phase IR light curves for a SN Ia published so far. In particular, SN 1998bu is the first normal SN Ia for which good pre- t B max IR coverage has been obtained. It reveals that the J , H and K light curves peak about 5 days earlier than the flux in the B -band curve.  相似文献   

19.
We present optical and near-infrared photometry and spectroscopy of the Type Ia SN 2003cg, which exploded in the nearby galaxy NGC 3169. The observations cover a period between −8.5 and +414 d post-maximum. SN 2003cg is a normal but highly reddened Type Ia event. Its B magnitude at maximum   B max= 15.94 ± 0.04  and  Δ m 15( B )obs= 1.12 ± 0.04 [Δ m 15( B )intrinsic= 1.25 ± 0.05]  . Allowing   RV   to become a free parameter within the Cardelli et al. extinction law, simultaneous matches to a range of colour curves of normal SNe Ia yielded   E ( B − V ) = 1.33 ± 0.11  , and   RV = 1.80 ± 0.19  . While the value obtained for   RV   is small, such values have been invoked in the past, and may imply a grain size which is small compared with the average value for the local interstellar medium.  相似文献   

20.
We present contemporaneous optical and infrared (IR) photometric observations of the Type IIn SN 1998S covering the period between 11 and 146 d after discovery. The IR data constitute the first ever IR light curves of a Type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2–3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After ∼100 d the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15±0.05 M of 56Ni which was produced in the explosion. We also report the discovery of an astonishingly high IR excess, K − L '=2.5, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be pre-existing and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号