首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey \(q\)-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.  相似文献   

2.
A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a “shock-rest-frame model”. The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.  相似文献   

3.
Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili (KP) equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with nonthermal electrons and warm ions. The influence of nonthermally distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that the presence of nonthermally distributed electrons has a significant role in the nature of ion acoustic waves. In particular, when the nonthermal distribution parameter ?? takes certain values the usual cylindrical KP equation (CKPE) and spherical KP equation (SKPE) become invalid. One then has to have recourse to the modified CKPE or SKPE. Analytical solutions of both CKPE and SKPE and their modified versions are discussed in the present paper. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.  相似文献   

4.
Electron-acoustic waves are studied with orbital angular momentum (OAM) in an unmagnetized collisionless uniform plasma, whose constituents are the Boltzmann hot electrons, inertial cold electrons and stationary ions. For this purpose, we employ the fluid equations to obtain a paraxial equation in terms of cold electron density perturbations, which admits both the Gaussian and Laguerre–Gaussian (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is found, which also allows us to express the components of the electric field in terms of LG potential perturbations. Calculating the energy flux of the electron-acoustic waves, an OAM density for these waves is obtained. Numerically, it is found that the parameters, such as, azimuthal angle, radial and angular mode numbers, and the beam waist strongly modify the LG potential profiles associated with electron-acoustic waves. The present results should be helpful to study the trapping and transportation of plasma particles and energy as well as to understand the electron-acoustic mode excitations produced by the Raman backscattering of laser beams in a uniform plasma.  相似文献   

5.
Nonlinear electron-acoustic solitary waves (EASWs) are studied using Sagdeev’s pseudo-potential technique in a collisionless unmagnetized plasma consisting of a cold electron fluid, nonthermal hot electrons and stationary ions. It is shown that the presence of fast nonthermal electrons may modify the parametric region where electron-acoustic solitons may exist. Our investigation is of wide relevance to astronomers and space scientists working on interstellar space plasmas.  相似文献   

6.
Propagation of nonlinear dust-acoustic waves in a magnetized collisionless plasma having positively, negatively charged dust grains and nonextensive distributed electrons and ions has been investigated. A reductive perturbation method is used to obtain a nonlinear Korteweg-de Vries (KdV) equation describing the model. The dynamics of the modulational instability gives rise to the formation of rogue waves that is described by a nonlinear Schrödinger equation. The dependence of rogue waves profiles on positive and negative charged dust cyclotron frequencies, nonextensive parameters of electrons and ions is investigated numerically. The result of the present investigation may be applicable to some plasma environments, such as cometary tails and upper mesosphere.  相似文献   

7.
Nonlinear dust acoustic (DA) shock waves are studied in a nonextensive charge varying complex plasma. A burger-like equation the coefficients of which is significantly modified by nonextensivity and dust charge fluctuation is derived. It is found that the influence of particle (electrons and ions) nonextensivity and dust charge fluctuation affect the basic properties of the collisionless DA shock wave drastically.  相似文献   

8.
Electron acoustic solitary waves in a collisionless plasma consisting of a cold electron fluid and non-thermal hot electrons are investigated by a direct analysis of the field equations. The Sagdeev potential is obtained in terms of electron acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the electron acoustic solitary waves as well as the parametric regime where the solitons can exist are very sensitive to the population of energetic non-thermal hot electrons. The soliton and double layer solutions are obtained as a small-amplitude approximation. The effect of non-thermal hot electrons is found to significantly change the properties of the electron acoustic solitary waves (EAWs). A comparison with the Viking Satellite observations in the day side auroral zone is also discussed.  相似文献   

9.
Ion-acoustic (IA) solitons in a collisionless plasma consisting of positive and negative ions and superthermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries (K-dV) and modified Korteweg-de Vries (mK-dV) equations. It is found that both compressive and rarefactive solitons can be propagated in this system. Also it is shown that at critical concentration of positive ions mK-dV solitons coexist. The effects of spectral index kappa, positive to negative ion density ratio and mass ratio of positive to negative ions on IA solitons structure are also discussed.  相似文献   

10.
Arbitrary amplitude ion-acoustic solitary waves propagating in a magnetized plasma composed of positive ions, superthermal electrons and positrons are investigated. For this purpose, the ions are represented by the hydrodynamical fluid equations while the non-Maxwellian electrons and positrons densities are assumed to follow kappa (κ) distribution. The basic equations are reduced to a pseudoenergy-balance equation. Existence conditions for large amplitude solitary waves are presented. The analytical and numerical analysis of the latter show that the ion-acoustic solitary wave can propagate only in the subsonic region in our plasma system and it is significantly influenced by the plasma parameters. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind, which contain an excess of superthermal particles.  相似文献   

11.
The propagation of nonlinear electron-acoustic waves (EAWs) in an unmagnetized collisionless plasma system consisting of a cold electron fluid, superthermal hot electrons and stationary ions is investigated. A reductive perturbation method is employed to obtain a modified Korteweg–de Vries (mKdV) equation for the first-order potential. The small amplitude electron-acoustic solitary wave, e.g., soliton and double layer (DL) solutions are presented, and the effects of superthermal electrons on the nature of the solitons are also discussed. But the results shows that the weak stationary EA DLs cannot be supported by the present model.  相似文献   

12.
For an unmagnetized collisionless electron–positron–ion plasma, the effects of trapped and non-thermal electron distributions are incorporated in the study of arbitrary amplitude ion-acoustic solitary structures. Both highly and weakly analyses are examined by deriving an energy integral equation involving the Sagdeev potential for the large amplitude limit, and obtaining the non-linear partial-differential equations for the small but finite amplitude limit. It is shown that there exist ion-acoustic solitary waves with qualitatively different structures in a way that depend on the population of trapped and non-thermal electrons. In the presence of trapped electrons, fully non-linear analyses show that plasma can support only arbitrary amplitude compressive solitary waves. On the other hand, a consideration of the fast or non-thermal electron distribution provides the possibility of the coexistence of large amplitude compressive and rarefactive solitary waves, whereas both of them are decoupled in the small amplitude limit. It is found that the effects of such electron distributions and positron concentration change the maximum values of the Mach number and the amplitude for which solitary waves can exist. Furthermore, the non-thermally distributed electrons provide a KdV equation in the small amplitude limit, whereas the trapped electrons give rise to a modified KdV equation which exhibits a stronger non-linearity.  相似文献   

13.
Properties of fully nonlinear electron-acoustic solitary waves in an unmagnetized and collisionless electron-positron-ion plasma containing cold dynamical electrons, superthermal electrons and positrons obeying Cairns’ distribution have been analyzed in the stationary background of massive positive ions. A linear dispersion relation has been derived, from which it is found that even in the absence of superthermal electrons, the superthermal positron component can provide the restoring force to the cold inertial electrons to excite electron-acoustic waves. Moreover, superthermal electron and positron populations seem to enhance the electron acoustic wave phase speed. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in the presence of positron both hump and dip type solitons appear to excite. The present work may be employed to explore and to understand the formation of electron acoustic soliton structures in the space and laboratory plasmas with nonthermal electrons and positrons.  相似文献   

14.
We have investigated heating of solar polar coronal holes and acceleration of fast solar wind by means of lower hybrid (LH) waves. A three-fluid Maxwell model comprising electrons, protons, and α-particles is employed at around two solar radii heliocentric distance, where wave dissipation starts to be dominated by collisionless processes. We suggest specific wavenumber ranges corresponding to LH as well as stochastic instabilities and find that these instabilities may bring about a significant energy gain in positive ions.  相似文献   

15.
The properties of nonplanar (cylindrical and spherical) ion-acoustic solitary waves (IA SWs) in an unmagnetized, collisionless electron-positron-ion (e-p-i) plasma, whose constituents are q-distributed electrons and positrons and inertial ions, are investigated by deriving the modified Gardner (MG) equation. The well known reductive perturbation method is employed to derive the MG equation. The basic features of nonplanar IA Gardner solitons (GSs) are discussed. It is found that the properties of nonplanar IA GSs (rarefactive and compressive) are significantly affected by the particle nonextensivity.  相似文献   

16.
In this paper, the ion-acoustic solitons in a weakly relativistic electron-positron-ion plasma have been investigated. Relativistic ions, Maxwell-Boltzmann distributed positrons and nonthermal electrons are considered in collisionless warm plasma. Using a reductive perturbation theory, a Korteweg-de Vries (KdV) equation is derived, and the relativistic effect on the solitons is studied. It is found that the amplitude of solitary waves of the KdV equation diverges at the critical values of plasma parameters. Finally, in this situation, the solitons of a modified KdV (mKdV) equation with finite amplitude is derived.  相似文献   

17.
A theoretical investigation is carried out for the nonlinear properties of small amplitude electron acoustic solitary waves (EAWs) in an unmagnetized collisionless plasma consisting of a cold electron fluid and hot electrons obeying κ velocity distribution, and stationary ions. The Korteweg de Vries (KdV) equation that contains the lowest-order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (KdV-type) equation that accounts for the higher-order nonlinearity and dispersion is obtained. A stationary solution for equations resulting from higher-order perturbation theory has been found using the renormalization method. The effects of the spectral index κ and the higher-order corrections are found to significantly change the properties (viz. the amplitude, width, electric field ) of the EASWs. A comparison with the Viking Satellite observations in the dayside auroral zone are also discussed.  相似文献   

18.
The propagation of an ion-acoustic soliton in a collisionless plasma with adiabatic positive and negative ions (with equal ion temperature) and hot non-isothermal electrons is studied by use of the renormalization method introduced by Kodama and Taniuti in the reductive perturbation method. The basic set of fluid equations describing the system is reduced to a Korteweg-de Vries (K-dV)-type equation for the first-order perturbed potential and to a linear inhomogeneous differential equation to the second-order of the perturbed potential. A stationary solution of the coupled equations is obtained.  相似文献   

19.
Using the Viking Satellite observations data in the dayside auroral zone, a theoretical investigation is carried out for contribution of the higher-order nonlinearity to nonlinear obliquely electron-acoustic solitary waves (EASWs) in a magnetized collisionless plasma consisting of a cold electron fluid and non-thermal hot electrons obeying a non-thermal distribution, and stationary ions. A Zakharov–Kuznetsov (ZK) equation that contains the lowest-order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (ZK-type) equation that accounts for the higher-order nonlinearity and dispersion is obtained. A stationary solution for equations resulting from higher-order perturbation theory has been found using the renormalization method. The effects of the external magnetic field and the obliqueness are found to significantly change the higher-order properties (viz. the amplitude, width, electric field and energy) of the EASWs. The effect of higher-order nonlinearity on the amplitude and width of the soliton are also discussed. A comparison with the Viking Satellite observations in the dayside auroral zone are taken into account.  相似文献   

20.
It is shown that sheared electron flows can generate long as well as short wavelength (in comparison with the ion gyroradius) electrostatic waves in a nonuniform magnetplasma. For this purpose, we derive dispersion relations by employing two-fluid and hybrid models; in the two-fluid model the dynamics of both the electrons and ions are governed by the hydrodynamic equations and the guiding center fluid drifts, whereas the hybrid model assumes kinetic ions and fluid electrons. Explicit expressions for the growth rates and thresholds are presented. Linearly excited waves attain finite amplitudes and start interacting among themselves. The interaction is governed by the nonlinear equations containing the Jacobian nonlinearities. Stationary solutions of the nonlinear mode coupling equations can be represented in the form of a dipolar vortex and a vortex street. Conditions under which the latter arise are given. Numerical results for the growth rates of linearly excited modes as well as for various types of vortices are displayed for the parameters that are relevant for the F-region of the Earth's ionosphere. It is suggested that the results of the present investigation are useful in understanding the properties of nonthermal electrostatic waves and associated nonlinear vortex structures in the Earth's ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号