首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We compare theW velocity dispersions of Brosche, Schwan & Schwarz (2001) with more recent results. The increase with the distance |z | from the galactic plane is confirmed, although perhaps with reduced amplitude. This could be interpreted either as one homogenous population or as a superposition of (at least) two populations with two constant dispersions and two scale heights. For each of the possibilities we propose a simple model. Combined with two observational variants for the velocity variation, we obtain surface densities up to |z | = 250 pc ranging from 5 to 44 M pc–2. Thus the case for considerable dark matter in the neighbourhood of the galactic plane is not supported  相似文献   

2.
The first results of the construction of a three-dimensional reddening map for stars within 1600 pc of the Sun are presented. Analysis of the distribution of 70 million stars from the 2MASS catalog with the most accurate photometry on the (J-Ks)-Ks diagram supplemented with Monte Carlo simulations has shown that one of the maxima of this distribution corresponds to F-type dwarfs and subgiants with a mean absolute magnitude M Ks = 2 m 5. The shift of this maximum toward large J-Ks with increasing Ks reflects the reddening of these stars with increasing heliocentric distance. The distribution of the sample of stars over Ks, l, and b cells with a statistically significant number of stars in each cell corresponds to their distribution over three-dimensional spatial cells. As a result, the reddening E(J-Ks) has been determined with an accuracy of 0· m 03 for spatial cells with a side of 100 pc. All of the known large absorbing clouds within 1600 pc of the Sun have manifested themselves in the results obtained. The distances to the near and far edges of the clouds have been determined with a relative accuracy of 15%. The cases where unknown clouds are hidden behind known ones on the same line of sight have been found. The distance dependence of reddening is considered for various Galactic latitudes and longitudes. The absorbing matter of the Gould Belt is shown to manifest itself at latitudes up to 40° and within 600 pc of the Sun. The size and influence of the Gould Belt may have been underestimated thus far. The absorbing matter at latitudes up to 60° and within 1600 pc of the Sun has been found to be distributed predominantly in the first and second quadrants in the southern hemisphere and in the third and fourth quadrants in the northern hemisphere. The warping of the absorbing layer in the near Galaxy apparently manifests itself in this way. A nonrandom orientation of the clouds relative to the Sun is possible. The mass of the baryonic dark matter in solar neighborhoods can then be considerably larger than is generally believed.  相似文献   

3.
This is a study of the stability of strange dwarfs, superdense stars with a small quark core (M 0core /M < 0.017) and an extended crust consisting of atomic nuclei and a degenerate electron gas where the density may be two orders of magnitude greater than the maximum density for white dwarfs. For a given equation of state, the mass, total number of baryons, and radius of strange dwarfs are uniquely determined by the central energy density ρ c and the energy density ρ tr of the crust at the surface of the quark core. Thus, the entire range of variation of ρ c and ρ tr must be taken into account in studying the stability of these configurations. This can be done by examining a series of configurations with a fixed rest mass M 0 (total baryon number) of the quark core and different masses of the crust. In each series, ρ tr ranges from the value for white dwarfs to ρ drip = 4.3∙1011 g/cm3, at which free neutrons are created in the crust. According to the static criterion for stability, stability is lost in an individual series when the mass of the strange dwarf reaches a maximum as a function of ρ tr . Translated from Astrofizika, Vol. 52, No. 2, pp. 325–332 (May 2009).  相似文献   

4.
The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ΔM. The actual value of ΔM or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ΔM in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10–11 M/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We have monitored S Ori 45, a young, low-mass (20 M j up) brown dwarf of the σ Orionis cluster (~3 Myr, 352 pc), using optical and near-infrared filters. S Ori 45 (spectral type M8.5) is found to be multi-periodic with a dominant modulation at 2.5–3.5 h, and a short modulation at about 46 min. We ascribe the longer of these modulations to a rotation period. After comparing these results with observations of more massive cluster brown dwarfs and field brown dwarfs, we conclude that substellar objects present rotational and angular momentum evolution. We have also obtained intermediate-resolution near-infrared spectroscopy of S Ori 70, which is a T-class, free-floating planetary candidate member in the σ Orionis cluster. Its observed spectrum has been compared to data of field brown dwarfs of similar types and to theoretical spectra computed for different surface temperatures and gravities. We conclude that S Ori 70 has a significantly cool, low-gravity atmosphere. This supports the young age of this object and its membership in the cluster. From state-of-the-art evolutionary models, the mass of S Ori 70 is estimated at 3 times the Jovian mass (+5 ?2 M j up), challenging current stellar/substellar formation models. S Ori 70 remains the lowest mass object so far identified in any open cluster.  相似文献   

6.
In this paper, we describe how to use the Maximum Reduced Proper Motion method (Phan‐Bao et al. 2003) to detect 57 nearby L and late‐M dwarfs (dphot ≤ 30 pc), 36 of them newly discovered. Spectroscopic observations of 43 of the 57 ultracool dwarfs were previously reported in Martín et al. (2010). These ultracool dwarfs were identified by color criteria in ∼5000 square degrees of the DENIS database and then further selected by the method for spectroscopic follow‐up to determine their spectral types and spectroscopic distances. We also report here our newly measured proper motions of these ultracool dwarfs from multi‐epoch images found in public archives (ALADIN, DSS, 2MASS, DENIS), with at least three distinct epochs and time baselines of 2 to 46 years (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The stellar composition of the Tycho-2 Catalogue in the range B-V = 0· m 75–1· m 25 has been reproduced through Monte Carlo simulations. For young and old stars of the red giant clump (RGC), the red giant branch, subgiants, red dwarfs, and thick-disk giants, we have specified the distributions in coordinates, velocities, B-V, and M V as a function of B-V and calculated their reduced proper motions, photometric distances from the (B-V)-M V calibration, and photoastrometric distances from the reduced proper motion-M V calibration. Our simulations have shown the following: (1) a sample of thin-disk giants within 500 pc with an admixture of less than 10% of other stars can be produced; (2) a sample of dwarfs within 100 pc almost without any admixture of other stars can be produced; (3) the Local Spiral Arm affects the RGC composition of any magnitude-limited catalog in favor of giants younger than 2 Gyr; (4) the samples produced using reduced proper motions can be used for kinematic studies, provided that the biases of the quantities being determined are simulated and taken into account; (5) the photometric distances correlate with the photoastrometric ones because of the correlation between the proper motion and magnitude; (6) the photometric distances are closer to the true ones for the red giant branch and red dwarfs as the categories of stars with a clear (B-V)-M V relation, while the photoastrometric distances are closer to the true ones for the RGC, subgiants, and thick-disk giants; (7) the calculated distances differ systematically from the true ones, but they can be used to analyze the three-dimensional distribution of stars. Our simulations confirm the validity of our previous selection of RGC stars from Tycho-2.  相似文献   

8.
Recent observations of nearby star forming regions have offered evidence that young brown dwarfs undergo a period of mass accretion analogous to the T Tauri phase observed in young stars. Brown dwarf analogs to stellar protostars, however, have yet to be definitively observed. These young, accreting objects would shed light on the nature of the dominant brown dwarf formation process, as well as provide ideal laboratories to investigate the dependence of the accretion mechanism on protostellar mass. Recent near infrared surveys have identified candidate proto‐brown dwarfs and characterized low mass protostars in nearby star forming regions. These techniques allow near infrared spectra to diagnose the effective temperature, accretion luminosity, magnetic field strength and rotation velocity of young low mass stars across the stellar/substellar boundary. The lowest mass proto‐brown dwarfs (M < 40 MJup), however, will prove challenging to observe given current near IR observational capabilities. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present the results of our spectroscopic observations of the eclipsing binary SZ Cam performed with the 1-m (Zeiss-1000) and 6-m (BTA) telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences in 2000 and 2003. Based on our results and published data, we have calculated new values for the component mass ratio, q = 0.72 ± 0.02, the radial velocity of SZ Cam relative to the Solar system barycenter, V 0 =?10.6 ± 2.0 km s?1, and the semi-amplitudes of the radial velocity curves for both components, K 1 = 192.0 ± 2.6 and K 2 = 266.4 ± 2.5 km s?1. The orbital semimajor axes and masses of the components have been determined: α1 = 10.4R , α2 = 14.5R , M 1 = 16.7M , M 2 = 12.0M . New light elements and parameters of the radial velocity curve for the third body have been obtained. The mass of the secondary component of the third body M 2 3b is discussed. Its lower limit is estimated to be M 2 3b = 1.4M .  相似文献   

11.
We present the results of our investigation of the geometrical and physical parameters of the W UMa‐type binary V404 Peg from analysis of CCD (BVRI) light curves and radial velocity data. The photometric data were obtained during 2010 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously by using the well‐known Wilson‐Devinney (2007 revision) code to obtain absolute and geometrical parameters. Our solution indicates that V404 Peg is an A‐type overcontact binary with a mass ratio of q = 0.243 and an overcontact degree of f = 32.1 %. Combining our light curves with the radial velocity curves from Maciejewski & Ligeza (2004), we determined the absolute parameters of this system as follows: a = 2.672 R, M1 = 1.175 M, M2 = 0.286 M, R1 = 1.346 R, and R2 = 0.710 R. Finally, we discuss the evolutionary condition of the system (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present the first deep, optical, wide‐field imaging survey of the young open cluster Collinder 359, complemented by near‐infrared follow‐up observations. This study is part of a large programme aimed at examining the dependence of the mass function on environment and time. We have surveyed 1.6 square degree in the cluster in the I and z filters with the CFH12K camera on the Canada‐France‐Hawaii 3.6m telescope down to completeness and detection limits in both filters of 22.0m and 24.0m, respectively. Based on their location in the optical (I‐z ,I ) colour‐magnitude diagram, we have extracted new cluster member candidates in Collinder 359 spanning 1.3‐0.04 M, assuming an age of 100 Myr and a distance of 450 pc for the cluster.We have used the 2MASS database as well as our own near‐infrared photometry to confirm the membership of the optically‐selected cluster candidates. Additionally, we have obtained optical spectroscopy and employed chromospheric activity as a further criterion to assess the membership of candidates. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We have performed deep, wide‐field imaging on a ∼0.4 deg2 field in the Pleiades (Melotte 22). The selected field was not yet target of a deep search for low mass stars and brown dwarfs. Our limiting magnitudes are R ∼ 22 mag and I ∼ 20 mag, sufficient to detect brown dwarf candidates down to 40 MJ. We found 197 objects, whose location in the (I, RI) color magnitude diagram is consistent with the age and the distance of the Pleiades. Using CTK R and I as well as JHK photometry from our data and the 2MASS survey we were able to identify 7 new brown dwarf candidates. We present our data reduction technique, which enables us to resample, calibrate, and co‐add many images by just two steps. We estimate the interstellar extinction and the spectral type from our optical and the NIR data using a two‐dimensional χ2 fitting (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present an RI photometric survey covering an area of 430 arcmin2 around the multiple star σ Orionis. The observations were conducted with the 0.8 m IAC‐80 Telescope at the Teide Observatory. The survey limiting R and I magnitudes are 22.5 and 21, and completeness magnitudes 21 and 20, respectively. We have selected 53 candidates from the I vs. RI colour‐magnitude diagram (I = 14–20) that follow the previously known photometric sequence of the cluster. Adopting an age of 2–4 Myr for the cluster, we find that these objects span a mass range from 0.35 M to 0.015 M. We have performed J‐band photometry of 52 candidates and Ks photometry for 12 of them, with the result that 50 follow the expected infrared sequence for the cluster, thus confirming with great confidence that the majority of the candidates are bona fide members. JHKs photometry from the Two Micron All Sky Survey (2MASS) is available for 50 of the candidates and are in good agreement with our data. Out of 48 candidates, which have photometric accuracies better than 0.1 mag in all bands, only three appear to show near‐infrared excesses. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
With an apparent cluster diameter of 1.5° and an age of 4 Myr, Trumpler 37 is an ideal target for photometric monitoring of young stars as well as for the search of planetary transits, eclipsing binaries and other sources of variability. The YETI consortium has monitored Trumpler 37 throughout 2010 and 2011 to obtain a comprehensive view of variable phenomena in this region. In this first paper we present the cluster properties and membership determination as derived from an extensive investigation of the literature. We also compared the coordinate list to some YETI images. For 1872 stars we found literature data. Among them 774 have high probability of being member and 125 a medium probability. Based on infrared data we re‐calculate a cluster extinction of 0.9–1.2 mag. We can confirm the age and distance to be 3–5 Myr and870 pc. Stellar masses are determined from theoretical models and the mass function is fitted with a power‐law index of α = 1.90 (0.1–0.4 M) and α = 1.12 (1–10 M). (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The Hipparcos Space Astrometry Mission photometric observations of V398 Lac, led to the discovery of its variability, allowing to classify it as an eclipsing binary with an orbital period of about 5.4 days. This prompted us to acquire highresolution échelle spectra with the aim of performing accurate radial velocity measurements and to determine the main physical parameters of the system's components. We present, for the first time, a double‐lined radial velocity curve and determine the orbital and physical parameters of the two components, that can be classified both as late B‐type stars. In particular, we obtained an orbital inclination i ∼ 85°. With this value of the inclination, we deduced masses M1 = 3.83±0.35 M andM2 = 3.29±0.32 M, and radii R1 = 4.89±0.18 R and R2 = 2.45±0.11 R for the more massive and less massive components, respectively. Both components are well inside their own Roche lobes. The mass ratio is M2/M1 ∼ 0.86. We derived also the projected rotational velocities as v1 sin i = 79±2 km s–1 and v2 sin i = 19±2 km s–1. Our measurements indicate that the rotation of the primary star is essentially pseudo‐synchronized with the orbital velocity at the periastron, while the secondary appears to rotate very slowly and has not yet attained synchronization. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Cross correlations between observed and synthetic spectra are used to discover yet another satellite of BM Ori with the following characteristics: effective temperature Teff = 4000 K, radius R = 16R, mass M = 1.8M, spectral type K7 III, absolute bolometric stellar magnitude Mb = + 4m·0, axial rotation velocity V sini = 85 km/s, and relative luminosity 0.005 near the V band. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 111–120 (February 2006).  相似文献   

18.
We interpret the de‐reddened UBV data for the field SA 133 to deduce the stellar density and metallicity distribution functions. The logarithmic local space density for giants, D*(0) = 6.40, and the agreement of the luminosity function for dwarfs and sub‐giants with the one of Hipparcos confirms the empirical method used for their separation. The metallicity distribution for dwarfs gives a narrow peak at [Fe/H] = +0.13 dex, due to apparently bright limiting magnitude, Vo = 16.5, whereas late‐type giants extending up to z ∼ 4.5 kpc from the galactic plane have a multimodal distribution. The metallicity distribution for giants gives a steep gradient d[Fe/H]/dz = –0.75 dex kpc–1 for thin disk and thick disk whereas a smaller value for the halo, i.e. d[Fe/H]/dz = –0.45 dex kpc–1. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this study we determined precise orbital and physical parameters of the very short‐period low‐mass contact binary system CC Com. The parameters are obtained by analysis of new CCD data combined with archival spectroscopic data. The physical parameters of the cool and hot components are derived as Mc = 0.717(14) M, Mh = 0.378(8) M, Rc = 0.708(12) R, Rh = 0.530(10) R, Lc = 0.138(12) L, and Lh = 0.085(7) L, respectively, and the distance of the system is estimated as 64(4) pc. The times of minima obtained in this study and with those published before enable us to calculate the mass transfer rate between the components which is 1.6 × 10–8 M yr–1. Finally, we discuss the possible evolutionary scenario of CC Com (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper‐motion companions of stars via multi‐epoch imaging. Their companionship is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co‐moving (13 σ) stellar companion ∼17.8 arcsec (350AU in projected separation) north of the nearby star HD141272 (21 pc).With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3±0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a M dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre‐main sequence status, since the system is consistent with the ZAMS of the Pleiades. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号