首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Analytical methods for the orbits of artificial satellites of the Moon   总被引:2,自引:0,他引:2  
The motion of a close artificial satellite of the Moon is considered. The principal perturbations taken into account are caused by the nonsphericity of the Moon and the attraction of the Earth and the Sun. To begin with, the expansions of the disturbing functions due to the nonsphericity of the primary body and the action of the disturbing mass-point body have been derived. The second expansion is produced in terms of the Keplerian elements of a satellite and the spherical coordinates of the disturbing body. Both expansions are valid for an arbitrary reference plane. The motion of a satellite of the Moon is studied in the selenocentric coordinate system referred to the Lunar equator and rotating with respect to the fixed ecliptic system. However, the coordinate exes in the equatorial plane are chosen so that the angular speed of rotation of the system is small. The motion of the satellite is described by means of the contact elements which enable one to utilize the conventional Lagrange's planetary equations and may be regarded as the generalization of the notion of the osculating elements to the case of the disturbing function depending not only o the coordinates and the time but on the velocities as well. Two methods are proposed to represent the motion of Lunar satellites over long intervals of time: the von Zeipel method and the Euler method of analytical integration with application of the variation-of-elements technique at every step of integration. The second method is exposed in great detail.Presented at the Meeting of Commission 7 of the IAU on Analytical Methods for the Orbits of Artificial Celestial Objects 14-th General Assembly of the IAU, Brighton, 1970.  相似文献   

2.
Lunisolar perturbations of an artificial satellite for general terms of the disturbing function were derived by Kaula (1962). However, his formulas use equatorial elements for the Moon and do not give a definite algorithm for computational procedures. As Kozai (1966, 1973) noted, both inclination and node of the Moon's orbit with respect to the equator of the Earth are not simple functions of time, while the same elements with respect to the ecliptic are well approximated by a constant and a linear function of time, respectively. In the present work, we obtain the disturbing function for the Lunar perturbations using ecliptic elements for the Moon and equatorial elements for the satellite. Secular, long-period, and short-period perturbations are then computed, with the expressions kept in closed form in both inclination and eccentricity of the satellite. Alternative expressions for short-period perturbations of high satellites are also given, assuming small values of the eccentricity. The Moon's position is specified by the inclination, node, argument of perigee, true (or mean) longitude, and its radius vector from the center of the Earth. We can then apply the results to numerical integration by using coordinates of the Moon from ephemeris tapes or to analytical representation by using results from lunar theory, with the Moon's motion represented by a precessing and rotating elliptical orbit.  相似文献   

3.
C.D. Murray 《Icarus》1982,49(1):125-134
The mean orbit of the Quadrantid meteor stream has a high eccentricity and inclination with an aphelion close to the orbit of Jupiter. The nodal regression rate, a quantity which has been well determined from observations, cannot be calculated with sufficient accuracy using standard low-order expansions of the disturbing function. By using a high-order expansion of the disturbing function we show how the behavior of the longitude of ascending node of the Quadrantid stream is a result of both secular and resonant effects. Our analysis illustrates how the proximity of the stream's orbit to the 2: 1 commensurability with Jupiter dominates the short-term variations in orbital elements.  相似文献   

4.
月球卫星轨道变化的分析解   总被引:3,自引:0,他引:3  
刘林  王家松 《天文学报》1998,39(1):81-102
由于月球自转缓慢及其引力位的特点,使得讨论月球卫星与人造地球卫星轨道变化的方法有所不同。  相似文献   

5.
An expansion of the Hamiltonian for the N-planet problem into a Poisson series using a system of modified (complex) Poincare´ canonical elements in the heliocentric coordinate system is constructed. The Lagrangian and Hamiltonian formalisms are used. The first terms in the expansions of the principal and complementary parts of the disturbing function are presented. Estimates of the number of terms in the presented expansions have been obtained through numerical experiments. A comparison with the results of other authors is made.  相似文献   

6.
In this paper we present an analytical theory with numerical simulations to study the orbital motion of lunar artificial satellites. We consider the problem of an artificial satellite perturbed by the non-uniform distribution of mass of the Moon and by a third-body in elliptical orbit (Earth is considered). Legendre polynomials are expanded in powers of the eccentricity up to the degree four and are used for the disturbing potential due to the third-body. We show a new approximated equation to compute the critical semi-major axis for the orbit of the satellite. Lie-Hori perturbation method up to the second-order is applied to eliminate the terms of short-period of the disturbing potential. Coupling terms are analyzed. Emphasis is given to the case of frozen orbits and critical inclination. Numerical simulations for hypothetical lunar artificial satellites are performed, considering that the perturbations are acting together or one at a time.  相似文献   

7.
In order to generate an analytical theory of the motion of the Moon by considering planetary perturbations, a procedure of general planetary theory (GPT) is used. In this case, the Moon is considered as an addition planet to the eight principal planets. Therefore, according to the GPT procedure, the theory of the Moon’s orbital motion can be presented in the form of series with respect to the evolution of eccentric and oblique variables with quasi-periodic coefficients, which are the functions of mean longitudes for principal planets and the Moon. The relationship between evolution variables and the time is determined by a trigonometric solution for the independent secular system that describes the secular motion of a perigee and the Moon node by considering secular planetary inequalities. Principal planetary coordinates required for generating the theory of the motion of the Moon includes only Keplerian terms, the intermediate orbit, and the linear theory with respect to eccentricities and inclinations in the first order relative to the masses. All analytical calculations are performed by means of the specialized echeloned Poisson Series Processor EPSP.  相似文献   

8.
Some of the results of an investigation into the long period behavior of the orbits of the Galilean satellites of Jupiter are presented. Special purpose computer programs were used to perform all the algebraic manipulations and series expansions that are necessary to describe the mutual interactions among the satellites.The disturbing function was expanded as a Poisson series in the modified Keplerian elements referred to a Jovicentric coordinate system. The differential equations for the modified Keplerian elements were then formed, and all short period perturbations were removed using Kamel's perturbation method. Approximate analytical solutions for these differential equations are derived, and the general form of the solutions are given.  相似文献   

9.
We derive the exact equations of motion for the circular restricted three-body problem in cylindrical curvilinear coordinates together with a number of useful analytical relations linking curvilinear coordinates and classical orbital elements. The equations of motion can be seen as a generalization of Hill’s problem after including all neglected nonlinear terms. As an application of the method, we obtain a new expression for the averaged third-body disturbing function including eccentricity and inclination terms. We employ the latter to study the dynamics of the guiding center for the problem of circular coorbital motion providing an extension of some results in the literature.  相似文献   

10.
The Galilean satellites’ dynamics has been studied extensively during the last century. In the past it was common to use analytical expansions in order to get simple models to integrate, but with the new generation of computers it became prevalent the numerical integration of very sophisticated and almost complete equations of motion. In this article we aim to describe the resonant and secular motion of the Galilean satellites through a Hamiltonian, depending on the slow angles only, obtained with an analytical expansion of the perturbing functions and an averaging operation. In order to have a model as near as possible to the actual dynamics, we added perturbations and we considered terms that in similar studies of the past were neglected, such as the terms involving the inclinations and the Sun’s perturbation. Moreover, we added the tidal dissipation into the equations, in order to investigate how well the model captures the evolution of the system.  相似文献   

11.
The disturbing function of the Moon (Sun) is expanded as a sum of products of two harmonic functions, one depending on the position of the satellite and the other on the position of the Moon (Sun). The harmonic functions depending on the position of the perturbing body are developed into trigonometric series with the ecliptic elementsl, l′, F, D and Γ of the lunar theory which are nearly linear with respect to time. Perturbation of elements are in the form of trigonometric series with the ecliptic lunar elements and the equatorial elements ω and Ω of the satellite so that analytic integration is simple and the results accurate over a long period of time.  相似文献   

12.
Various Fourier expansions of the planetary disturbing function can be computed numerically with the use of numerical Fourier analysis. The task to compute the most general five-dimensional Fourier expansion of disturbing function has become feasible with typical server-class computers quite recently. In such an expansion two anomalies, two arguments of perihelions and two longitudes of the node are independent angular variables, while two semi-major axes, two eccentricities and two inclinations are fixed numerically. The semianalytical expansion of the disturbing function resulting from numerical Fourier analysis theoretically converges for any values of the parameters except for those sets of parameters which allow the bodies to collide. Various aspects of the numerical computation of the Fourier expansion are discussed. Theoretical and practical convergence of the Fourier series is discussed and illustrated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We investigate the long time stability in Nekhoroshev’s sense for the Sun– Jupiter–Saturn problem in the framework of the problem of three bodies. Using computer algebra in order to perform huge perturbation expansions we show that the stability for a time comparable with the age of the universe is actually reached, but with some strong truncations on the perturbation expansion of the Hamiltonian at some stage. An improvement of such results is currently under investigation.  相似文献   

14.
The Moon’s physical libration in latitude generated by gravitational forces caused by the Earth’s oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth’s oblateness: a) has little effect on the instantaneous axis of Moon’s rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon’s celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse’s axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon’s poles of rotation move. The dynamical reason for the inclination of the Moon’s mean equator with respect to the ecliptic is oblateness of the body of the Moon.  相似文献   

15.
In this paper, we present the mathematical basis for the calculation of proper elements for asteroids in 3:2 mean-motion resonance with Jupiter from their osculating Keplerian elements. The method is based on a new resonant Lie-series perturbation theory (Ferraz-Mello, 1997, 2002), which allows the construction of formal solutions in cases where resonant and long-period angles appear simultaneously. For the disturbing function, we used the Beaugé’s expansion (Beaugé, 1996), adapted to include short period terms. In this paper, the theory is restricted to the planar case and only the perturbations due to Jupiter are considered.  相似文献   

16.
The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas of lunar science, including an improved estimate of the bulk composition of the Moon, detailed observations of the lateral and vertical nature of the crust, chemical observations of the maria, investigations into the lunar regolith, and mapping of potential lunar resources. In combination with information to be obtained by the other instruments on SMART-1 and the data already provided by the Clementine and Lunar Prospector missions, this information will allow for a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon.  相似文献   

17.
We describe a semi-analytical averaging method aimed at the computation of the motion of an artificial satellite of the Moon. In this paper, the first of the two part study, we expand the disturbing function with respect to the small parameters. In particular, a semi-analytic theory of the motion of the Moon around the Earth and the libration of the lunar equatorial plane using different reference frames are introduced. The second part of this article shows that the choice of the canonical Poincaré variables lead to equations in closed form without singularities in e = 0 or I = 0. We introduce new expressions that are sufficiently compact to be used for the study of any artificial satellite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We consider asymmetric periodic solutions of the double-averaged Hill problem by taking into account oblateness of the central planet. They are generated by steady-state solutions, which are stable in the linear approximation and correspond to satellite orbits orthogonal to the line of intersection of the planet’s equatorial plane with the orbital plane of a disturbing point. For two model systems [(Sun+Moon)-Earth-satellite] and [Sun-Uranus-satellite], these periodic solutions are numerically continued from a small vicinity of the equilibrium position. The results are illustrated by projecting the solutions onto the (pericenter argument-eccentricity) and (longitude-inclination) planes.  相似文献   

19.
From the observations of the gravitational field and the figure of the Moon, it is known that its center of mass (briefly COM) does not coincide with the center of figure (COF), and the line “COF/COM” is not directed to the center of the Earth, but deviates from it to the South–East. Here we study the deviation of the lunar COM to the East from the mean direction to Earth.At first, we consider the optical libration of a satellite with synchronous rotation around the planet for an observer at a point on second (empty) orbit focus. It is found that the main axis of inertia of the satellite has asymmetric nonlinear oscillations with amplitude proportional to the square of the orbit eccentricity. Given this effect, a mechanism of tidal secular evolution of the Moon’s orbit is offered that explains up to \(20\%\) of the known displacement of the lunar COM to the East. It is concluded that from the alternative—evolution of the Moon’s orbit with a decrease or increase in eccentricity—only the scenario of evolution with a monotonous increase in orbit eccentricity agrees with the displacement of lunar COM to the East. The precise calculations available confirm that now the eccentricity of the lunar orbit is actually increasing and therefore in the past it was less than its modern value, \(e = 0.0549\).To fully explain the displacement of the Moon’s COM to the East was deduced a second mechanism, which is based on the reliable effect of tidal changes in the shape of the Moon. For this purpose the differential equation which governs the process of displacement of the Moon’s COM to the East with inevitable rounding off its form in the tidal increase process of the distance between the Earth and the Moon is derived. The second mechanism not only explains the Moon’s COM displacement to the East, but it also predicts that the elongation of the lunar figure in the early epoch was significant and could reach the value \(\varepsilon\approx0.31\). Applying the theory of tidal equilibrium figures, we can estimate how close to the Earth the Moon could have formed.  相似文献   

20.
An algorithm is developed to find Weak Stability Boundary transfer trajectories to Moon in high fidelity force model using forward propagation. The trajectory starts from an Earth Parking Orbit (circular or elliptical). The algorithm varies the control parameters at Earth Parking Orbit and on the way to Moon to arrive at a ballistic capture trajectory at Moon. Forward propagation helps to satisfy launch vehicle’s maximum payload constraints. Using this algorithm, a number of test cases are evaluated and detailed analysis of capture orbits is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号