首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
T. Encrenaz  M. Combes 《Icarus》1982,52(1):54-61
Using a method defined in a previous paper [M. Combes and T. Encrenaz, Icarus39 1–27 (1979)], we reestimated the C/H ratio in the atmospheres of Jupiter and Saturn by the measurements of the weak visible CH4 bands, the CH43 band, and the (3-0) and (4-0) quadrupole bands of H2. In the case of Jupiter we conclude that the C/H ratio is enriched by a factor ranging from 1.7 to 3.6 relative to the solar value. In the case of Saturn, our derived C/H value ranges from 1.2 to 3.2 times the solar value. The Jovian D/H ratio derived from this study is 1.2 × 10?5 < D/H < 3.1 × 10?5. The value derived for the D/H ratio on Saturn is not precise enough to be conclusive.  相似文献   

2.
Infrared spectral observations of Mars, Jupiter, and Saturn were made from 100 to 470 cm?1 using NASA's G. P. Kuiper Airborne Observatory. Taking Mars as a calibration source, we determined brightness temperatures of Jupiter and Saturn with approximately 5 cm?1 resolution. The data are used to determine the internal luminosities of the giant planets, for which more than 75% of the thermally emitted power is estimated to be in the measured bandpass: for Jupiter LJ = (8.0 ± 2.0) × 10?10L and for Saturn LS = (3.6 ± 0.9) × 10?10. The ratio R of thermally emitted power to solar power absorbed was estimated to be RJ = 1.6 ± 0.2, and RS = 2.7 ± 0.8 from the observations when both planets were near perihelion. The Jupiter spectrum clearly shows the presence of the rotational ammonia transitions which strongly influence the opacity at frequencies ?250 cm?1. Comparison of the data with spectra predicted from current models of Jupiter and Saturn permits inferences regarding the structure of the planetary atmospheres below the temperature inversion. In particular, an opacity source in addition to gaseous hydrogen and ammonia, such as ammonia ice crystals as suggested by Orton, may be necessary to explain the observed Jupiter spectrum in the vicinity of 250 cm?1.  相似文献   

3.
《Planetary and Space Science》1999,47(10-11):1225-1242
Infrared spectra of Jupiter and Saturn have been recorded with the two spectrometers of the Infrared Space Observatory (ISO) in 1995–1998, in the 2.3–180 μm range. Both the grating modes (R=150–2000) and the Fabry-Pérot modes (R=8000–30,000) of the two instruments were used. The main results of these observations are (1) the detection of water vapour in the deep troposphere of Saturn; (2) the detection of new hydrocarbons (CH3C2H, C4H2, C6H6, CH3) in Saturn’s stratosphere; (3) the detection of water vapour and carbon dioxide in the stratospheres of Jupiter and Saturn; (4) a new determination of the D/H ratio from the detection of HD rotational lines. The origin of the external oxygen source on Jupiter and Saturn (also found in the other giant planets and Titan in comparable amounts) may be either interplanetary (micrometeoritic flux) or local (rings and/or satellites). The D/H determination in Jupiter, comparable to Saturn’s result, is in agreement with the recent measurement by the Galileo probe (Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., Niemann, H.B., 1998. Galileo probe measurements of D/H and 3He/4He in Jupiters atmosphere. Space Science Rev. 84 251–263); the D/H values on Uranus and Neptune are significantly higher, as expected from current models of planetary formation.  相似文献   

4.
The abundances of PH3, CH3D, and GeH4 are derived from the 2100- to 2250-cm?1 region of the Voyager 1 IRIS spectra. No evidence is seen for large-scale variations of the phosphine abundance over Jovian latitudes between ?30 and +30°. In the atmospheric regions corresponding to 170–200°K, the derived PH3/H2 value is (4.5 ± 1.5) × 10?7 or 0.75 ± 0.25 times the solar value. This result, compared with other PH3 determinations at 10 μm, suggests than the PH3/H2 ratio on Jupiter decreases with atmospheric pressure. In the 200–250°K region, we derive, within a factor of 2, CH3D/H2 and GeH4/H2 ratios of 2.0 × 10?7 and 1.0 × 10?9, respectively. Assuming a C/H value of 1.0 × 10?3, as derived from Voyager, our CH3D/H2 ratio implies a D/H ratio of 1.8 × 10?5, in reasonable agreement with the interstellar medium value.  相似文献   

5.
We report the detection of HCN on Jupiter. Three R-branch lines of the ν2 fundamental of HCN near 13.5 μm were observed in absorption, from which the HCN column density is inferred to be 5 × 10?3 cm-am with an uncertainty of a factor of 2. If emission from the stratosphere exists, then the derived column density is only a lowe limit. We suggest that the Jovian HCN most likely originates from the photolysis of CH4 and NH3 in the lower stratosphere and upper troposphere. In addition, an upper limit of 2.5 × 10?2 cm-am was established for the column density of HCN on Saturn.  相似文献   

6.
The UCSD X-ray telescope on OSO-3 scanned Jupiter for 33 days during February and March 1968. We have searched the data for a steady Jovian flux, and for a burst component at times of decametric radio bursts. Neither component was detected at a sensitivity of ~0.1 photon (cm2sec)?1 for hv > 7.7 keV. At 4.4AU, the 3σ upper limits correspond to X-ray luminosities of 7.4 × 1019 ergs sec?1 for the steady component, and 2 × 1020 ergs sec?1 for the burst component. The observations occurred during a period of high solar activity, during which three sudden-commencement magnetic storms were observed at Earth. We compare the upper limits with several different calculations of the expected flux levels, and conclude that major improvements in X-ray detection techniques will be required before Jovian X rays can be detected with near-Earth observations.  相似文献   

7.
We have calculated evolutionary and static models of Jupiter and Saturn with homogeneous solar composition mantles and dense cores of material consisting of solar abundances of SiO2, MgO, Fe, and Ni. Evolutionary sequences for Jupiter were calculated with cores of mass 2, 4, 6, and 8% of the Jovian mass. Evolutionary sequences for Saturn were calculated with cores of mass 16, 18, 20, and 22% of total mass. Two envelope mixtures, representative of the solar abundances were used: X (mass fraction of hydrogen) = 0.74, Y (mass fraction of helium) = 0.24 and X = 0.77 and Y = 0.21. For Jupiter, the observations of the temperature at 1 bar pressure (T1bar), radius and internal luminosity were best fit by evolutionary models with a core mass of ~6.5% and chemical composition of X = 0.77, Y = 0.21. The calculated cooling time for Jupiter is approximately 4.9 × 109 years, which is consistent, within our error bars, with the known age of the solar system. For Saturn, the observations of the radius, internal luminosity and T1BAR can be best fit by evolutionary models with a core mass of ~21% and chemical composition of X = 0.77, Y = 0.21. The cooling time calculated for Saturn is approximately 2.6 × 109 years, almost a factor 2 less than the present age of the solar system. Static models of Jupiter and Saturn were calculated for the above chemical compositions in order to investigate the sensitivity of the calculated gravitational moments, J2 and J4, to the mass of the dense core, T1BAR and hydrogen/helium ratio. We find for Jupiter that a model having a core mass of approximately 7% gives values of J2, J4, and T1BAR that are within observational limits, for the mixture X = 0.77, Y = 0.21. The static Jupiter models are completely consistent with the evolutionary results. For Saturn, the quantities J2, J4, and J6 determined from the static models with the most probable T1BAR of 140°K, using modeling procedures which result in consistent models for Jupiter, are considerably below the observed values.  相似文献   

8.
Stanley F. Dermott 《Icarus》1979,37(1):310-321
If the orbital resonances in the Jovian and Saturnian satellite systems are the result of orbital evolution due to tidal dissipation then the present rates of energy dissipation (Edot) are >2 × 1020 ergs sec?1 (Jupiter) and ?2 × 1016 ergs sec?1 (Saturn). These values of Edot can be accounted for if the planets have rocky cores with volumes equal to those suggested by current models of the interiors and if the material of these cores is both solid and imperfectly elastic (Qe ~ 34). The calculated values of Qe are not strongly dependent on either the rigidity of the core or the densities of the core and the mantle. Thus, these quantities need not be known precisely. It may be significant that approximately the same value of Qe is needed for all the major planets (Jupiter, Saturn, and Uranus) even though the values of Edot for these planets differ by a factor greater than 104.  相似文献   

9.
We have obtained 5-μm brightness temperatures and brightness temperature upper limits for Uranus and Neptune which are substantially lower than those of Jupiter and Saturn and which correspond to a geometric albedo of approximately 0.01, in agreement with results reported by F. C. Gillet and G. H. Rieke (1977, Astrophys. J.218, L141–L144). Phospine and CH3D, which are observed at 5 μm on Jupiter and Saturn, are discussed as possible sources of opacity at 5 μm in the atmospheres of Uranus and Neptune.  相似文献   

10.
The spectrum of Saturn was measured from 80 to 350 cm?1 (29 to 125 μm) with ≈6-cm?1 resolution using a Michelson interferometer aboard NASA's Kuiper Airborne Observatory. These observations are of the full disk, with little contribution from the rings. For frequencies below 300 cm?1, Saturn's brightness temperature rises slowly, reaching ≈111°K at 100 cm?1. The effective temperature is 96.8 ± 2.5°K, implying that Saturn emits 3.0 ± 0.5 times as much energy as it receives from the Sun. The rotation-inversion manifolds of NH3 that are prominent in the far-infrared spectrum of Jupiter are not observed on Saturn. Our models predict the strengths to be only ≈2 to 5°K in brightness temperature because most of the NH3 is frozen out; this is comparable to the noise in our data. By combining our data with those of an earlier investigation when the Saturnicentric latitude of the Sun was B′ = 21.2°, we obtain the spectrum of the rings. The high-frequency end of the ring spectrum (ν > 230 cm?1) has nearly constant brightness temperature of 85°K. At lower frequencies, the brightness temperature decreases roughly as predicted by a simple absorption model with an optical depth proportional to ν1.5. This behavior could be due to mu-structure on the surface of the ring particles with a scale size of 10 to 100 μm and/or to impurities in their composition.  相似文献   

11.
《Planetary and Space Science》1999,47(10-11):1183-1200
Interior models of Jupiter and Saturn are calculated and compared in the framework of the three-layer assumption, which rely on the perception that both planets consist of three globally homogeneous regions: a dense core, a metallic hydrogen envelope, and a molecular hydrogen envelope. Within this framework, constraints on the core mass and abundance of heavy elements (i.e. elements other than hydrogen and helium) are given by accounting for uncertainties on the measured gravitational moments, surface temperature, surface helium abundance, and on the inferred protosolar helium abundance, equations of state, temperature profile and solid/differential interior rotation. Results obtained solely from static models matching the measured gravitational fields indicate that the mass of Jupiter’s dense core is less than 14 M (Earth masses), but that models with no core are possible given the current uncertainties on the hydrogen–helium equation of state. Similarly, Saturn’s core mass is less than 22 M but no lower limit can be inferred. The total mass of heavy elements (including that in the core) is constrained to lie between 11 and 42 M in Jupiter, and between 19 and 31 M in Saturn. The enrichment in heavy elements of their molecular envelopes is 1–6.5, and 0.5–12 times the solar value, respectively. Additional constraints from evolution models accounting for the progressive differentiation of helium (Hubbard WB, Guillot T, Marley MS, Burrows A, Lunine JI, Saumon D, 1999. Comparative evolution of Jupiter and Saturn. Planet. Space Sci. 47, 1175–1182) are used to obtain tighter, albeit less robust, constraints. The resulting core masses are then expected to be in the range 0–10 M, and 6–17 M for Jupiter and Saturn, respectively. Furthermore, it is shown that Saturn’s atmospheric helium mass mixing ratio, as derived from Voyager, Y=0.06±0.05, is probably too low. Static and evolution models favor a value of Y=0.11−0.25. Using, Y=0.16±0.05, Saturn’s molecular region is found to be enriched in heavy elements by 3.5 to 10 times the solar value, in relatively good agreement with the measured methane abundance. Finally, in all cases, the gravitational moment J6 of models matching all the constraints are found to lie between 0.35 and 0.38×10−4 for Jupiter, and between 0.90 and 0.98×10−4 for Saturn, assuming solid rotation. For comparison, the uncertainties on the measured J6 are about 10 times larger. More accurate measurements of J6 (as expected from the Cassini orbiter for Saturn) will therefore permit to test the validity of interior models calculations and the magnitude of differential rotation in the planetary interior.  相似文献   

12.
Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.4 × 10?3 W/m2 was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.27 × 10?4 and 0.5 × 10?4. The terrestrial value is 1 × 10?4.  相似文献   

13.
We have searched for and estimated the possible gravitational influence of dark matter in the Solar system based on the EPM2011 planetary ephemerides using about 677 thousand positional observations of planets and spacecraft. Most of the observations belong to present-day ranging measurements. Our estimates of the dark matter density and mass at various distances from the Sun are generally overridden by their errors (σ). This suggests that the density of dark matter ρ dm, if present, is very low and is much less than the currently achieved error of these parameters. We have found that ρ dm is less than 1.1 × 10?20 g cm?3 at the orbital distance of Saturn, ρ dm < 1.4 × 10?20 g cm?3 at the orbital distance of Mars, and ρ dm < 1.4 × 10?19 g cm?3 at the orbital distance of the Earth. We also have considered the case of a possible concentration of dark matter to the Solar system center. The dark matter mass in the sphere within Saturn’s orbit should be less than 1.7 × 10?10 M even if its possible concentration is taken into account.  相似文献   

14.
Sang J. Kim  John Caldwell 《Icarus》1982,52(3):473-482
The 8.6-μm emission feature of Titan's infrared spectrum was analyzed using the Voyager temperature-pressure profile. Although both C3H8 and CH3D have bands at that wavelength, we show that CH3D dominates the observed emission on Titan. We derived a CH3D/CH4 mixing ratio using this band and the strong CH4 band at 7.7 μm. The corresponding D/H ratio is 4.2?1.5+2 × 10?4, neglecting deuterium fractionation with other molecules. The main uncertainty in this value comes from the continuum emission characteristics. The D/H ratio is apparently significantly enhanced on Titan with respect to published values for Saturn.  相似文献   

15.
Data on the composition and thermal structure, and the Lyman-alpha dayglow of Saturn when analyzed in conjunction with photochemical models of the hydrocarbons and the atomic hydrogen production yield the homopause value of the eddy diffusion coefficient to be approximately 108 cm2 s?1. The equatorial value of the eddy diffusion coefficient at the homopause of Saturn is thus found to be approximately 100 times greater than on Jupiter. The mesosphere (and presumably, troposphere) of Saturn appears to be considerably more turbulent than the upper atmosphere of Jupiter.  相似文献   

16.
The hypothesis on the genetic connection of near-parabolic comets with Jupiter, Saturn, and the transPlutonian region (5–3000 AU) proposed by E.M. Drobyshevskii is considered. It has been shown that, on average, 5.6 comets per an area of 106 AU2 passed through the transPlutonian region during the whole history of observations. Six-hundred nineteen comets crossed the ecliptic at heliocentric distances ranging from 0 to 2 AU. As has been shown, from the total number of 945 near-parabolic comets, eight comets closely approached Jupiter and five closely approached Saturn. The Kreutz comets, 1277 objects, did not approach Jupiter closer than 3 AU. Their minimal distance to Saturn was 5.5 AU. The minimal distance of the Kreutz comets from the edge of the transPlutonian region was 28.8 AU. The analysis led to the conclusion that the concept on the origin of the near-parabolic comets suggested by Drobyshevskii is groundless.  相似文献   

17.
We present an estimation of the lower limits of local magnetic field strengths in quiescent, activated, and active (surges) prominences, based on reconstructed three-dimensional (3D) trajectories of individual prominence knots. The 3D trajectories, velocities, tangential and centripetal accelerations of the knots were reconstructed using observational data collected with a single ground-based telescope equipped with a Multi-channel Subtractive Double Pass imaging spectrograph. Lower limits of magnetic fields channeling observed plasma flows were estimated under assumption of the equipartition principle. Assuming approximate electron densities of the plasma n e=5×1011?cm?3 in surges and n e=5×1010?cm?3 in quiescent/activated prominences, we found that the magnetic fields channeling two observed surges range from 16 to 40?Gauss, while in quiescent and activated prominences they were less than 10?Gauss. Our results are consistent with previous detections of weak local magnetic fields in the solar prominences.  相似文献   

18.
An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are ~10 m s?1 weaker than cloud level winds in the cores of eastward jets and ~5 m s?1 stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 × 10?5 m2 s?3) and smaller in westward jet regions (1.6 × 10?5 m2 s?3) than the global mean value (4.1 × 10?5 m2 s?3). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level.  相似文献   

19.
S. Kumar  D.M. Hunten  J.B. Pollack 《Icarus》1983,55(3):369-389
Nonthermal escape processes responsible for the escape of hydrogen and deuterium from Venus are examined for present and past atmospheres. Three mechanisms are important for the escape of hydrogen from the present atmosphere: (a) charge exchange of plasmaspheric H+ with exospheric H, (b) impact of exospheric hot O atoms on H, and (c) ion molecule reactions involving O+ and H2. However, in the past when the H abundance was higher, the charge-exchange mechanism would be the strongest. The H escape flux increases rapidly with increasing hydrogen abundance in the upper atmosphere and saturates at a value of 1 × 1010 cm?2 sec?1 emerging primarily from the day side when the H mixing ratio at the homopause is 2 × 10?3. This corresponds to an H2O mixing ratio of 1 × 10?3 at the cold trap and ~15% at the surface. Deuterium would also escape by the charge-exchange mechanism and a D/H enrichment by a factor of ~1000 over the nonthermal escape regime is expected, which could have lasted over the last 3 billion years. Coincidentally, the onset of hydrodynamic flow leading to efficient H escape occurs just at the H2O mixing ratio at which the charge-exchange escape flux saturates. Thus it is possible that Venus has lost an Earth-equivalent ocean of water over geologic time. If so, either the D/H enrichment has been kept low by modest outgassing of juvenile water or Venus started out with a D/H ratio of ~4.0 × 10?6.  相似文献   

20.
The radiative lifetimes of cometary OH are calculated as a function of the heliocentric velocity of the comet and the velocity distributions of the product atoms are determined. At a distance of 1 AU from the Sun, the lifetimes vary between 1.2×105 and 1.9×105 sec at solar minimum and between 1.0×105 and 1.4×105 sec at solar maximum, depending upon velocity. Continuous absorption into the repulsive 12Σ- state is major destruction path. The calculated lifetimes are generally consistent with the lifetimes inferred from observations, but suggest some elaboration of the models is necessary. Photodissociation of OH produces a low-velocity component of hydrogen atoms at 8 km sec?1 relative to the parent OH molecule and a high-velocity component between 17 and 27 km sec?1. Photodissociation of OH leads to metastable O(1D) and O(1S) and is an additional source of the red and green line emission of atomic oxygen. The lifetime of OD is estimated to be about 4.3× 105 sec at solar minimum and 2.6×105 sec at solar maximum so that the OD/OH ratio in comets is enhanced relative to the HDO/H2O production ratio by a factor between 2 and 3. Photodissociation of OD produces only high-velocity D atoms with a mean value of 17 km sec?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号