首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976?–?2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north–south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north–south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the descending phase during Solar Cycles 21?–?23. The sign of the imbalance did not change during the 11 years from one polar-field reversal to the next and always coincided with the sign of the Sun’s polar magnetic field in the northern hemisphere. The dominant sign of leading sunspots in one of the hemispheres determines the sign of the magnetic-flux imbalance. The sign of the north–south asymmetry of the magnetic fluxes and the sign of the imbalance of the positive and the negative fluxes are related to the quarter of the 22-year magnetic cycle where the magnetic configuration of the Sun remains constant (from the minimum where the sunspot sign changes according to Hale’s law to the magnetic-field reversal and from the reversal to the minimum). The sign of the north–south asymmetry for the time interval considered was determined by the phase of the 11-year cycle (before or after the reversal); the sign of the imbalance of the positive and the negative fluxes depends on both the phase of the 11-year cycle and on the parity of the solar cycle. The results obtained demonstrate the connection of the magnetic fields in active regions with the Sun’s polar magnetic field in the northern hemisphere.  相似文献   

2.
A relationship between the north–south asymmetry of sunspot formation and the amplitude of 11-year cycles has been established from the RGO/USAF/NOAA data on sunspots. It is shown that the higher the solar cycle amplitude, the smaller the absolute value of the north–south asymmetry. The revealed pattern has been investigated in a numerical dynamo model with irregular variations of the alpha-effect.  相似文献   

3.
In this work a new information resource located at http://www.gao.spb.ru/database/esai and hereinafter referred to as ESAI (“Extended time series of Solar Activity Indices”) is presented. ESAI includes observational, synthetic and simulated sets to study solar magnetic field variations and their influence on the Earth. ESAI extends the ordinary lengths of some traditional indices, parameterizing time variations of physically different characteristics of solar activity. In particular, long-term sets of the following indices are presented: sunspot areas, the Wolf numbers, polar faculae numbers, sunspot mean latitudes and north-south asymmetry of hemispheres for different components of activity. Some methods for making correct conclusions from incomplete data and some criteria to estimate the reliability of the obtained information are discussed.  相似文献   

4.
Analysis of long-term solar data from different observatories is required to compare and confirm the various level of solar activity in depth. In this paper, we study the north–south asymmetry of monthly mean sunspot area distribution during the cycle-23 and rising phase of cycle-24 using the data from Kodaikanal Observatory (KO), Michelson Doppler Imager (MDI) and Solar Optical Observing Network (SOON). Our analysis confirmed the double peak behavior of solar cycle-23 and the dominance of southern hemisphere in all the sunspot area data obtained from three different resources. The analysis also showed that there is a 5–6 months time delay in the activity levels of two hemispheres. Furthermore, the wavelet analysis carried on the same data sets showed several known periodicities (e.g., 170–180 days, 2.1 year) in the north–south difference of sunspot area data. The temporal occurrence of these periods is also the same in all the three data sets. These results could help in understanding the underlying mechanism of north–south asymmetry of solar activity.  相似文献   

5.
In the present study, the north–south asymmetry of filaments in solar cycles 16–21 is investigated with the use of the solar filaments observed at the Observatoire de Paris, Section de Meudon from March 1919 to December 1989. Filament activity is found regularly dominated in each of cycles 16–21 in the same hemisphere as that inferred by sunspot activity, and it is found to run in a different asymmetrical behavior at different latitudinal bands, suggesting that the north–south asymmetry of filament activity should be a function of latitudes. The regularity on the north–south asymmetry of sunspot activity given by Li et al. (2002b) is demonstrated by filament activity. The periods in the north–south asymmetry of solar filament activity are 9.13, and 12.8 years without the solar cycle found.  相似文献   

6.
The skewness of the monthly distribution of GSE latitudinal angles of Interplanetary Magnetic Field (IMF) observed near the Earth (Sk) is found to show anti-correlation with sunspot activity during the solar cycles 20–24. Sk can be considered as a measure of the predominant polarity of north-south component of IMF (Bz component) in the GSE system near 1 AU. Sk variations follow the magnitude of solar polar magnetic fields in general and polarity of south polar fields in particular during the years 1967–2020. Predominant polarity of Sk is found to be independent of the heliographic latitude of Earth. Sk basically reflects the variations of the solar dipolar magnetic field during a sunspot cycle. It is also found that IMF sector polarity variation is not a good indicator of the magnitude changes in solar polar magnetic fields during a sunspot cycle. This is possibly due to the influence of non-dipolar components of the solar magnetic field and the associated north-south asymmetries in the heliospheric current sheet.  相似文献   

7.
Data of hourly interplanetary plasma (field magnitude, solar wind speed, and ion density), solar (sunspot number, solar radio flux), and geomagnetic indices (Kp, Ap) over the period 1970-2010, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). A persistent yearly north-south asymmetry of the field magnitude is clear over the considered period, and there is no magnetic solar cycle dependence. There is a weak N-S asymmetry in the averaged solar wind speed, exhibited well at times of maximum solar activities. The solar plasma is more dense north of the current sheet than south of it during the second negative solar polarity epoch (qA < 0). Moreover, the N - S asymmetry in solar activity (Rz) can be statistically highly significant. The sign of the average N - S asymmetry depends upon the solar magnetic polarity. The annual magnitudes of N - S asymmetry depend positively on the solar magnetic cycle. Most of the solar radio flux asymmetries occurred during the period of positive IMF polarity.  相似文献   

8.
This paper presents the study of normalized north–south asymmetry, cumulative normalized north–south asymmetry and cumulative difference indices of sunspot areas, solar active prominences (at total, low (?40°) and high (?50°) latitudes) and Hα solar flares from 1964 to 2008 spanning the solar cycles 20–23. Three different statistical methods are used to obtain the asymmetric behavior of different solar activity features. Hemispherical distribution of activity features shows the dominance of activities in northern hemisphere for solar cycle 20 and in southern hemisphere for solar cycles 21–23 excluding solar active prominences at high latitudes. Cumulative difference index of solar activity features in each solar cycle is observed at the maximum of the respective solar cycle suggesting a cyclic behavior of approximately one solar cycle length. Asymmetric behavior of all activity features except solar active prominences at high latitudes hints at the long term periodic trend of eight solar cycles. North–south asymmetries of SAP (H) express the specific behavior of solar activity at high solar latitudes and its behavior in long-time scale is distinctly opposite to those of other activity features. Our results show that in most cases the asymmetry is statistically highly significant meaning thereby that the asymmetries are real features in the N–S distribution of solar activity features.  相似文献   

9.
A spatiotemporal analysis of long-term measurements of the Sun’s magnetic field was carried out to study changes in its zonal structure and reversals of the polar fields in Cycles 21?–?24. A causal relationship between activity complexes, their remnant magnetic fields, and high-latitude magnetic fields has been demonstrated in the current cycle. The appearance of unipolar magnetic regions near the poles is largely determined by the decay of long-lived activity complexes. The nonuniform distribution of sunspot activity and its north–south asymmetry result in the asymmetry of remnant fields that are transported poleward due to meridional circulation. The asymmetry of high-latitude magnetic fields leads to an asynchrony of polar-field reversals in both hemispheres. The interaction of high-latitude unipolar magnetic regions with the polar fields affects the embedded coronal holes. The evolution of large-scale magnetic fields was also studied in a time–latitude aspect. It is shown that regular reversals of the Sun’s polar fields resulted from cyclic changes in high-latitude magnetic fields. A triple polarity reversal of the polar fields in Cycle 21 and short-term polarity alternations at the poles were interpreted taking into account the interaction of the remnant fields with the Sun’s polar fields.  相似文献   

10.
A study on north–south (N–S) asymmetry of different solar activity features (DSAF) such as solar proton events, solar active prominences [total, low (?40°) and high (?50°) latitudes], Hα flare indices, soft X-ray flares, monthly mean sunspot areas and monthly mean sunspot numbers carried out from May 1996 to October 2008. Study shows a southern dominance of DSAF during this period. During the rising phase of the cycle 23 the number of DSAF approximately equals on both, the northern and the southern hemispheres. But these activities tend to shift from northern to southern hemisphere during the period 1998–1999. The statistical significance of the asymmetry time series using a χ2-test of goodness of fit indicates that in most of the cases the asymmetry is highly significant, meaning thereby that the asymmetry is a real feature in the N–S distribution of DSAF.  相似文献   

11.
We describe the decay phase of one of the largest active regions of solar cycle 22 that developed by the end of June 1987. The center of both polarities of the magnetic fields of the region systematically shifted north and poleward throughout the decay phase. In addition, a substantial fraction of the trailing magnetic fields migrated equatorward and south of the leading, negative fields. The result of this migration was the apparent rotation of the magnetic axis of the region such that a majority of the leading polarity advanced poleward at a faster rate than the trailing polarity. As a consequence, this region could not contribute to the anticipated reversal of the polar field.The relative motions of the sunspots in this active region were also noteworthy. The largest, leading, negative polarity sunspot at N24 exhibited a slightly slower-than-average solar rotation rate equivalent to the mean differential rotation rate at N25. In contrast, the westernmost, leading, negative polarity sunspot at N21 consistently advanced further westward at a mean rate of 0.13 km s–1 with respect to the mean differential rotation rate at its latitude. These sunspot motions and the pattern of evolution of the magnetic fields of the whole region constitute evidence of the existence of a large-scale velocity field within the active region.Solar Cycle Workshop Paper.  相似文献   

12.
Erofeev  D.V. 《Solar physics》1999,186(1-2):431-447
Large-scale distribution of the sunspot activity of the Sun has been analyzed by using a technique worked out previously (Erofeev, 1997) to study long-lived, non-axisymmetric magnetic structures with different periods of rotation. Results of the analysis have been compared with those obtained by analyzing both the solar large-scale magnetic field and large-scale magnetic field simulated by means of the well-known flux transport equation using the sunspot groups as a sole source of new magnetic flux in the photosphere. A 21-year period (1964–1985) has been examined.The rotation spectra calculated for the total time interval of two 11-year cycles indicate that sunspot activity consists of a series of discrete components (modes) with different periods of rotation. The largest-scale component of the sunspot activity reveals modes with 27-day and 28-day periods of rotation situated, correspondingly, in the northern and southern hemispheres of the Sun, and two modes with rotation periods of about 29.7 days situated in both hemispheres. Such a modal structure of the sunspot activity agrees well with that of the large-scale solar magnetic field. Moreover, the magnetic field distribution simulated with the flux transport equation also reveals the same modal structure. However, such an agreement between the large-scale solar magnetic field and both the sunspot activity and simulated magnetic field is unstable in time; so, it is absent in the northern hemisphere of the Sun during solar cycle No. 20. Thus the sources of magnetic flux responsible for formation of the large-scale, rigidly rotating magnetic patterns appear to be closely connected, but are not identical with the discrete modes of the sunspot activity.  相似文献   

13.
Measurements from the Mount Wilson Observatory (MWO) were used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that presented in Pevtsov et al. (Astrophys. J. Lett. 742, L36, 2011), we selected the sunspot with the strongest measured field strength for each observing week and computed monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500?–?700 gauss (G), but no statistically significant long-term trends. Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for cycles 15?–?19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500?–?700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300?–?350 G, and, following a broad maximum in 1920?–?1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scaled the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (the linear fit to the data yields a slope of ??0.2±0.8 G?year?1). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21?–?23) with a mean downward trend of ≈?15 G?year?1.  相似文献   

14.
We study the dynamic evolution of the time series describing the plage regions areas observed daily at the Observatório Astronómico da Universidade de Coimbra, in each one of the solar hemispheres during solar cycles 21?–?23. The classical ARMA model has proven to be insufficient to describe the time variations seen in the data because of the strong conditional variability. We found that the data are well fitted by ARMA mixed with power-δ TGARCH error models. The power index δ is non-integer; this property has recently been introduced in the literature on time-series analyses and indicates the presence of strong volatility and long memory in the data series. We also detected dynamic asymmetry in the plage region areas observed in the two hemispheres when two different temporal models were obtained to fit them. The finding of a dynamic asymmetry is also supported by the dynamic evolution of the daily difference (north–south) time series, which is significantly different from white noise. This statistical modeling of time series, taking into account new and different characteristics of the solar activity, will be very useful in subsequent forecast developments.  相似文献   

15.
We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8&amp;#x2013;23. In the study we have used sunspot data for the period 1832&amp;#x2013;1976, flare index data for the period 1936-1993, H&amp;#x03B1; flare data 1993&amp;#x2013;1998 and solar active prominences data for the period 1957&amp;#x2013;1998. Earlier Verma reported long-term cyclic period in N-S asymmetry and also that the N-S asymmetry of solar activity phenomena during solar cycles 21, 22, 23 and 24 will be south dominated and the N-S asymmetry will shift to north hemisphere in solar cycle 25. The present study shows that the N-S asymmetry during solar cycles 22 and 23 are southern dominated as suggested by Verma.  相似文献   

16.
Mordvinov  A.V.  Plyusnina  L.A. 《Solar physics》2000,197(1):1-9
Time–frequency variability of the solar mean magnetic field (SMMF) was studied, based on a continuous wavelet analysis. The rotational modulation of the SMMF dominates the wavelet spectrum at 27–30 and 13.5-day time scales. The rotational variation, in turn, is amplitude-modulated by the quasi-biennial periodicity in the SMMF. This is caused by magnetic field eruptions. Rigidly rotating modes appear in the time–longitude distribution of the large-scale magnetic field that is plotted from a deconvolution of the SMMF time series with a Carrington period. These rotational modes coexist and transform into one another over an 11-yr cycle. The modes with periods of 27.8–28.0 days dominate the phase of activity rise, whereas the 27-day rotational mode dominates the declining phase of the 11-yr cycle. The rotational modes with periods of 29–30 days occurred episodically. Most of the features in the time–longitude distribution of the SMMF are identifiable with those in similar diagrams of the solar background magnetic fields. They represent a combined effect of the background magnetic fields from both hemispheres. Eruptions of magnetic fields lead to dramatic changes in the picture of solar rotation and correlate well with the polarity asymmetry in the SMMF signal. The polarity asymmetry in the SMMF time series exhibits both long-term changes and a 22-yr cyclic behaviour, depending on the reversals of the global magnetic field in cycles 20–23.  相似文献   

17.
A comparative analysis of solar and heliospheric magnetic fields in terms of their cumulative sums reveals cyclic and long-term changes that appear as a magnetic flux imbalance and alternations of dominant magnetic polarities. The global magnetic flux imbalance of the Sun manifests itself in the solar mean magnetic field (SMMF) signal. The north – south asymmetry of solar activity and the quadrupole mode of the solar magnetic field contribute the most to the observed magnetic flux imbalance. The polarity asymmetry exhibits the Hale magnetic cycle in both the radial and azimuthal components of the interplanetary magnetic field (IMF). Analysis of the cumulative sums of the IMF components clearly reveals cyclic changes in the IMF geometry. The accumulated deviations in the IMF spiral angle from its nominal value also demonstrate long-term changes resulting from a slow increase of the solar wind speed over 1965 – 2006. A predominance of the positive IMF B z with a significant linear trend in its cumulative signal is interpreted as a manifestation of the relic magnetic field of the Sun. Long-term changes in the IMF B z are revealed. They demonstrate decadal changes owing to the 11/22-year solar cycle. Long-duration time intervals with a dominant negative B z component were found in temporal patterns of the cumulative sum of the IMF B z .  相似文献   

18.
The evolution of the large-scale magnetic field of the Sun has been studied using an algorithm of tomographic inversion. By analyzing line-of-sight magnetograms, we mapped the radial and toroidal components of the Sun??s large-scale magnetic field. The evolution of the radial and toroidal magnetic field components in the 11-year solar cycle has been studied in a time?Clatitude aspect. It is shown that the toroidal magnetic field of the Sun is causally related to sunspot activity; i.e., the sunspot formation zones drift in latitude and follow the toroidal magnetic fields. The results of our analysis support the idea that the high-latitude toroidal magnetic fields can serve as precursors of sunspot activity. The toroidal fields in the current cycle are anomalously weak and also show a barely noticeable equatorward drift. This behavior of the toroidal magnetic field suggests low activity levels in the current cycle and in the foreseeable future.  相似文献   

19.
R. P. Kane 《Solar physics》2006,236(1):207-226
After increasing almost monotonically from sunspot minimum, sunspot activity near maximum falters and remains in a narrow grove for several tens of months. During the 2–3 years of turmoil near sunspot maximum, sunspots depict several peaks (Gnevyshev peaks). The spaces between successive peaks are termed as Gnevyshev Gaps (GG). An examination showed that the depths of the troughs varied considerably from one GG to the next in the same cycle, with magnitudes varying in a wide range (<1% to ∼20%). In any cycle, the sunspot patterns were dissimilar to those of other solar parameters, qualitatively as well as quantitatively, indicating a general turbulence, affecting different solar parameters differently. The solar polar magnetic field reversal does not occur at the beginning of the general turmoil; it occurs much later. For cosmic ray (CR) modulation which occurs deep in the heliosphere, one would have thought that the solar open magnetic field flux would play a crucial role, but observations show that the sunspot GGs are not reflected well in the solar open magnetic flux, where sometimes only one peak occurred (hence no GG at all), not matching with any sunspot peak and with different peaks in the northern and southern hemispheres (north – south asymmetry). Gaps are seen in interplanetary parameters but these do not match exactly with sunspot GGs. For CR data available only for five cycles (19 – 23), there are CR gaps in some cycles, but the CR gaps do not match perfectly with gaps in the solar open magnetic field flux or in interplanetary parameters or with sunspot GGs. Durations are different and/or there are variable delays, and magnitudes of the sunspot GGs and CR gaps are not proportional. Solar polar magnetic field reversal intervals do not coincide with either sunspot GGs or CR gaps, and some CR gaps start before magnetic field reversals, which should not happen if the magnetic field reversals are the cause of the CR gaps.  相似文献   

20.
Makarov  V.I.  Tlatov  A.G.  CALLEBaUT  D.K.  Obridko  V.N.  Shelting  B.D. 《Solar physics》2001,198(2):409-421
Hα magnetic synoptic charts of the Sun are processed for 1915–1999 and the spherical harmonics are calculated. It is shown that the polarity distribution of the magnetic field on Hα charts is similar to the polarity distribution of the Stanford magnetic field observations during 1975–1999. The index of activity of the large-scale magnetic field A(t), representing the sum of the intensities of dipole and octupole components, is introduced. It is shown that the cycle of the large-scale magnetic field of the Sun precedes on the average by 5.5 years the sunspot activity cycle, W(t). This means that the weak large-scale magnetic fields of the Sun do not result from decay and diffusion of strong fields from active regions as it is supposed in all modern theories of the solar cycle. On the basis of the new data the intensity of the current solar cycle 23 is predicted and some aspects of the theory of the solar cycle are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号