首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We present new and definitive results of Cassini plasma spectrometer (CAPS) data acquired during passage through Saturn's inner plasmasphere by the Cassini spacecraft during the approach phase of the Saturn orbit insertion period. This analysis extends the original analysis of Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32, L14S07, doi:10.1029/2005GL022653] to L∼10 along with also providing a more comprehensive study of the interrelationship of the various fluid parameters. Coincidence data are sub-divided into protons and water group ions. Our revised analysis uses an improved convergence algorithm which provides a more definitive and independent estimate of the spacecraft potential ΦSC for which we enforce the protons and water group ions to co-move with each other. This has allowed us to include spacecraft charging corrections to our fluid parameter estimations and allow accurate estimations of fluctuations in the fluid parameters for future correlative studies. In the appendix we describe the ion moments algorithm, and minor corrections introduced by not weighting the moments with sinθ term in Sittler et al. [2005] (Correction offset by revisions to instruments geometric factor). Estimates of the spacecraft potential and revised proton densities are presented. Our total ion densities are in close agreement with the electron densities reported by Moncuquet et al. [2005. Quasi-thermal noise spectroscopy in the inner magnetosphere of Saturn with Cassini/RPWS: electron temperatures and density. Geophys. Res. Lett. 32, L20S02, doi:10.1029/2005GL022508] who used upper hybrid resonance (UHR) emission lines observed by the radio and plasma wave science (RPWS) instrument. We show a positive correlation between proton temperature and water group ion temperature. The proton and thermal electron temperatures track each with both having a positive radial gradient. These results are consistent with pickup ion energization via Saturn's rotational electric field. We see evidence for an anti-correlation between radial flow velocity VR and azimuthal velocity Vφ, which is consistent with the magnetosphere tending to conserve angular momentum. Evidence for MHD waves is also present. We show clear evidence for outward transport of the plasma via flux tube interchange motions with the radial velocity of the flow showing positive radial gradient with functional dependence for 4<L<10 (i.e., if we assume to be diffusive transport then DLLD0L11 for fixed stochastic time step δt). Previous models with centrifugal transport have used DLLD0L3 dependence. The radial transport seems to begin at Enceladus’ L shell, L∼4, where we also see a minimum in the W+ ion temperature . For the first time, we are measuring the actual flux tube interchange motions in the magnetosphere and how it varies with radial distance. These observations can be used as a constraint with regard to future transport models for Saturn's magnetosphere. Finally, we evaluate the thermodynamic properties of the plasma, which are all consistent with the pickup process being the dominant energy source for the plasma.  相似文献   

2.
The Cassini plasma spectrometer (CAPS) instrument made measurements of Titan's plasma environment when the Cassini Orbiter flew through the moon's plasma wake October 26, 2004 (flyby TA). Initial CAPS ion and electron measurements from this encounter will be compared with measurements made by the Voyager 1 plasma science instrument (PLS). The comparisons will be used to evaluate previous interpretations and predictions of the Titan plasma environment that have been made using PLS measurements. The plasma wake trajectories of flyby TA and Voyager 1 are similar because they occurred when Titan was near Saturn's local noon. These similarities make possible direct, meaningful comparisons between the various plasma wake measurements. They lead to the following: (A) The light and heavy ions, H+and N+/O+, were observed by PLS in Saturn's magnetosphere in the vicinity of Titan while the higher mass resolution of CAPS yielded H+ and H2+as the light constituents and O+/CH4+ as the heavy ions. (B) Finite gyroradius effects were apparent in PLS and CAPS measurements of ambient O+ ions as a result of their absorption by Titan's extended atmosphere. (C) The principal pickup ions inferred from both PLS and CAPS measurements are H+, H2+, N+, CH4+ and N2+. (D) The inference that heavy pickup ions, observed by PLS, were in narrow beam distributions was empirically established by the CAPS measurements. (E) Slowing down of the ambient plasma due to pickup ion mass loading was observed by both instruments on the anti-Saturn side of Titan. (F) Strong mass loading just outside the ionotail by a heavy ion such as N2+ is apparent in PLS and CAPS measurements. (G) Except for the expected differences due to the differing trajectories, the magnitudes and structures of the electron densities and temperatures observed by both instruments are similar. The high-energy electron bite-out observed by PLS in the magnetotail is consistent with that observed by CAPS.  相似文献   

3.
We present new results of Cassini's T9 flyby with complementary observations from T18. Based on Cassini plasma spectrometer (CAPS) and Cassini magnetometer (MAG), compositional evidence shows the upstream flow for both T9 and T18 appears composed of light ions (H+ and H2+), with external pressures ∼30 times lower than that for the earlier TA flyby where heavy ions dominated the magnetospheric plasma. When describing the plasma heating and sputtering of Titan's atmosphere, T9 and T18 can be considered interactions of low magnetospheric energy input. On the other hand, T5, when heavy ion fluxes are observed to be higher than typical (i.e., TA), represents the limiting case of high magnetospheric energy input to Titan's upper atmosphere. Anisotropy estimates of the upstream flow are 1<T/T<3 and the flow is perpendicular to B, indicative of local picked up ions from Titan's H and H2 coronae extending to Titan's Hill sphere radius. Beyond this distance the corona forms a neutral torus that surrounds Saturn. The T9 flyby unexpectedly resulted in observation of two “wake” crossings referred to as Events 1 and 2. Event 2 was evidently caused by draped magnetosphere field lines, which are scavenging pickup ions from Titan's induced magnetopause boundary with outward flux ∼2×106 ions/cm2/s. The composition of this out flow is dominated by H2+ and H+ ions. Ionospheric flow away from Titan with ion flux ∼7×106 ion/cm2/s is observed for Event 1. In between Events 1 and 2 are high energy field aligned flows of magnetosphere protons that may have been accelerated by the convective electric field across Titan's topside ionosphere. T18 observations are much closer to Titan than T9, allowing one to probe this type of interaction down to altitudes ∼950 km. Comparisons with previously reported hybrid simulations are made.  相似文献   

4.
The principal advance of the ATS-6 satellite beacon experiment was the ability to deduce continuously the electron content along the entire slant path from ground-based measurements of the signal group delay. This feature has been exploited in conjunction with the more usual Faraday rotation technique to separate the total electron content into ionospheric and protonospheric components. The physical validity of the deduced quantities is investigated using a mathematical model of the plasmasphere in which integration of the time-dependent continuity and momentum equations for oxygen and hydrogen ions along selected L shells yields the ion concentrations and field-aligned fluxes. The ion concentrations are then integrated along the propagation path to various ground stations from ATS-6 to give computed values for comparison with observations. The mathematical model is used with different sets of atmospheric parameters to investigate the significance of ionospheric and protonospheric contents as derived from beacon data.The calculated electron concentrations are able to reproduce mid-latitude equinoctial electron content observations. The shape parameters τ and F can also be simulated by day, but night-time values do not match the observations well, a greater protonospheric content being required. The calculations show that the quantity Np, which is readily derived from ATS-6 observations, may be interpreted as the slant H+ content above some fixed height in the case of some stations (but not others) if the plasmasphere is reasonably full. The total slant content of H+ is approx. twice the value of Np, though it appears that for the Lancaster raypath a closer relationship exists between Np and the H+ tube content at L = 1.8. In general,Np is most closely related to the tube content for an L value slightly greater than the minimum L intersected along the raypath.  相似文献   

5.
A time-dependent one-dimensional model of Saturn's ionosphere has been developed as an intermediate step towards a fully coupled Saturn Thermosphere-Ionosphere Model (STIM). A global circulation model (GCM) of the thermosphere provides the latitude and local time dependent neutral atmosphere, from which a globally varying ionosphere is calculated. Four ion species are used (H+, H+2, H+3, and He+) with current cross-sections and reaction rates, and the SOLAR2000 model for the Sun's irradiance. Occultation data from the Voyager photopolarimeter system (PPS) are adapted to model the radial profile of the ultraviolet (UV) optical depth of the rings. Diurnal electron density peak values and heights are generated for all latitudes and two seasons under solar minimum and solar maximum conditions, both with and without shadowing from the rings. Saturn's lower ionosphere is shown to be in photochemical equilibrium, whereas diffusive processes are important in the topside. In agreement with previous 1-D models, the ionosphere is dominated by H+ and H+3, with a peak electron density of ∼104 electrons cm−3. At low- and mid-latitudes, H+ is the dominant ion, and the electron density exhibits a diurnal maximum during the mid-afternoon. At higher latitudes and shadowed latitudes (smaller ionizing fluxes), the diurnal maximum retreats towards noon, and the ratio of [H+]/[H+3] decreases, with H+3 becoming the dominant ion at altitudes near the peak (∼1200-1600 km) for noon-time hours. Shadowing from the rings leads to attenuation of solar flux, the magnitude and latitudinal structure of which is seasonal. During solstice, the season for the Cassini spacecraft's encounter with Saturn, attenuation has a maximum of two orders of magnitude, causing a reduction in modeled peak electron densities and total electron column contents by as much as a factor of three. Calculations are performed that explore the parameter space for charge-exchange reactions of H+ with vibrationally excited H2, and for different influxes of H2O, resulting in a maximum diurnal variation in electron density much weaker than the diurnal variations inferred from Voyager's Saturn Electrostatic Discharge (SED) measurements. Peak values of height-integrated Pedersen conductivities at high latitudes during solar maximum are modeled to be ∼42 mho in the summer hemisphere during solstice and ∼18 mho during equinox, indicating that even without ionization produced by auroral processes, magnetosphere-ionosphere coupling can be highly variable.  相似文献   

6.
Icy grains and satellites orbiting in Saturn's magnetosphere are immersed in a plasma that sputters their surfaces. This limits the lifetime of the E-ring grains and ejects neutrals that orbit Saturn until they are ionized and populate its magnetosphere. Here we re-evaluate the sputtering rate of ice in Saturn's inner magnetosphere using the recent Cassini data on the plasma ion density, temperature and composition [Sittler Jr., E.C., et al., 2007a. Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planet. Space Sci. 56, 3-18.] and a recent summary of the relevant sputtering data for ice [Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161.]. Although the energetic (>10 keV) ion component at Saturn is much smaller than was assumed to be the case after Voyager [Jurac, S., Johnson, R.E., Richardson, J.D., Paranicas, C., 2001a. Satellite sputtering in Saturn's magnetosphere. Planet. Space Sci. 49, 319-326; Jurac, S., Johnson, R.E., Richardson, J.D., 2001b. Saturn's E ring and production of the neutral torus. Icarus 149, 384-396.], we show that the sputtering rates are sensitive to the temperature of the thermal plasma and are still robust, so that sputtering likely determines the lifetime of the grains in Saturn's tenuous E-ring.  相似文献   

7.
In this work we analyze and compare the vertical cloud structure of Saturn's Equatorial Zone in two different epochs: the first one close to the Voyagers flybys (1979-1981) and the second one in 2004, when the Cassini spacecraft entered its orbit around the planet. Our goal is to retrieve the altitude of cloud features used as zonal wind tracers in both epochs. We reanalyze three different sets of photometrically calibrated published data: ground-based in 1979, Voyager 2 PPS and ISS observations in 1981, and we analyze a new set of Hubble Space Telescope images for 2004. For all situations we reproduced the observed reflectivity by means of a similar vertical model with three layers. The results indicate the presence of a changing tropospheric haze in 1979-1981 (Ptop∼100 mbar, τ∼10) and in 2004 (Ptop∼50 mbar, τ∼15) where the tracers are embedded. According to this model the Voyager 2 ISS images locate cloud tracers moving with zonal velocities of 455 to 465 (±2) m/s at a pressure level of 360 ± 140 mbar. For HST observations, our previous works had showed cloud tracers moving with zonal wind speeds of 280±10 m/s at a pressure level of about 50±10 mbar. All these values are calculated in the same region (3°±2° N). This speed difference, if interpreted as a vertical wind shear, requires a change of per scale height, two times greater than that estimated from temperature observations. We also perform an initial guess on Cassini ISS vertical sounding levels, retrieving values compatible with HST ones and Cassini CIRS derived vertical wind shear, but not with Voyager wind measurements. We conclude that the wind speed velocity differences measured between 1979-1981 and 2004 cannot be explained as a wind shear effect alone and demand dynamical processes.  相似文献   

8.
A 3-D Monte Carlo model is used to describe the ejection of N and N2 from Titan due to the interaction of Saturn's magnetospheric N+ ions and molecular pick-up ions with its N2 atmosphere. Based on estimates of the ion flux into Titan's corona, atmospheric sputtering is an important source of both atomic and molecular nitrogen for the neutral torus and plasma in Saturn's outer magnetosphere, a region now being studied by the Cassini spacecraft.  相似文献   

9.
A series of narrow-band images of Saturn was acquired on 7-11 February 2002 with an acousto-optic imaging spectrometer (AImS) at about 160 wavelengths between 500 and 950 nm. Our unique data set with high spectral agility and wide spectral coverage enabled us to extensively study the cloud structure and aerosol properties of Saturn's equatorial region at −10° latitude. Theoretical center-limb profiles based on twelve cloud models were fit to the observations at 23 wavelengths across the 619-, 727-, and 890-nm methane bands. A simultaneous multiwavelength multivariable fitting algorithm was adopted in varying up to 9 free parameters to efficiently explore the vast multidimensional parameter space, and a total of ∼12,000 initial conditions were tested. From the acceptable ranges of the model parameters, we obtained the following major conclusions: (1) the brightening of Saturn's equatorial region observed near 890 nm in February 2002 (I/F∼0.25 at the central meridian) results from high altitudes of a stratospheric haze layer (τ?∼0.05 above ∼0.04-bar level) and an upper tropospheric cloud (τ∼6 above ∼0.25-bar level), (2) if the upper tropospheric cloud is composed of ammonia ice particles and the Mie theory is applied, the mean particle size is larger than about 0.5 μm, (3) an optically thick cloud layer exists at a level of 0.5-2.2 bar below the upper cloud deck in Saturn's equatorial region. The ongoing observations by the Cassini spacecraft over wider spectral range and from various phase angles will further constrain Saturn's cloud structure and aerosol properties.  相似文献   

10.
11.
Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with ~2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (GCR) and the ablation of incident meteoritic dust from Enceladus’ E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100 km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H2+ and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N2+, N+ and CH4+ can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O+ can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O+ ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's “warm ponds” on Titan.  相似文献   

12.
All of the OGO-5 light ion density measurements (covering the period from March 1968 to May 1969) obtained from the Lockheed Light Ion Mass Spectrometer were used to determine the average global topology of the equatorial plasmasphere density distribution. The variation of the light ion equatorial density at L?3.2 with local time was deduced by determining the average density observed within one hour of a specific local time and within 0.1 of a given L coordinate. The average H+ density showed a semidiurnal variation with peaks near noon and midnight. The He+ observations also revealed multiple peaks throughout the day but with smaller amplitudes than those of H+. At L>3.2 plasma trough conditions increase the scatter of densities. The average variation of the H+ density with L within the plasmasphere is found to be steepest near midnight and can be least squares fitted equally well to either an exponential variation exp (?bL) where b is between 0.85 and 1.5 or to a power law L?a where a varies from 3.2 to 5.  相似文献   

13.
Sang J. Kim  T.R. Geballe 《Icarus》2005,179(2):449-458
We have used synthetic spectra to analyze a medium resolution 2.9-4.2 μm spectrum of Saturn's temperate region observed at UKIRT using CGS4. The synthetic spectra include CH4, PH3, and NH3 lines, for which mixing ratios were adopted from recent Cassini results. The observed absorption features in the spectrum are well accounted for by lines of these molecular species formed 22 +/− 8 km above the 1 bar pressure level at ∼610 mbar. The influence of optically thin haze particles at higher altitudes on the spectrum is not pronounced, with higher spectral resolution probably required to constrain the effects of haze in this wavelength region. Fluorescent line emission by CH4 in its ν3 and ν3+ν4ν4 bands, detected in the 3.2-3.5 μm region, originates between 400 km (∼0.06 mbar) and 800 km (∼0.01 μbar) above the 1 bar level, with peak contributions from the two major contributing bands at 550 km (∼3 μbar) and 700 km (∼0.1 μbar), respectively.  相似文献   

14.
A global-mean model of coupled neutral and ion chemistry on Titan has been developed. Unlike the previous coupled models, the model involves ambipolar diffusion and escape of ions, hydrodynamic escape of light species, and calculates the H2 and CO densities near the surface that were assigned in some previous models. We tried to reduce the numbers of species and reactions in the model and remove all species and reactions that weakly affect the observed species. Hydrocarbon chemistry is extended to C12H10 for neutrals and C10H+11 for ions but does not include PAHs. The model involves 415 reactions of 83 neutrals and 33 ions, effects of magnetospheric electrons, protons, and cosmic rays. UV absorption by Titan's haze was calculated using the Huygens observations and a code for the aggregate particles. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempt to calculate them separately (e.g., in models of ionospheric composition) may result in significant error. The model densities of various species are typically in good agreement with the observations except vertical profiles in the stratosphere that are steeper than the CIRS limb data. (A model with eddy diffusion that facilitates fitting to the CIRS limb data is considered as well.) The CO densities are supported by the O+ flux from Saturn's magnetosphere. The ionosphere includes a peak at 80 km formed by the cosmic rays, steplike layers at 500-700 and 700-900 km and a peak at 1060 km (SZA = 60°). Nighttime densities of major ions agree with the INMS data. Ion chemistry dominates in the production of bicyclic aromatic hydrocarbons above 600 km. The model estimates of heavy positive and negative ions are in reasonable agreement with the Cassini results. The major haze production is in the reactions C6H + C4H2, C3N + C4H2, and condensation of hydrocarbons below 100 km. Overall, precipitation rate of the photochemical products is equal to 4-7 kg cm−2 Byr−1 (50-90 m Byr−1 while the global-mean depth of the organic sediments is ∼3 m). Escape rates of methane and hydrogen are 2.9 and 1.4 kg cm−2 Byr−1, respectively. The model does not support the low C/N ratio observed by the Huygens ACP in Titan's haze.  相似文献   

15.
Cassini's Imaging Science Subsystem (ISS) instrument took nearly 1200 images of the Jupiter ring system during the spacecraft's 6-month encounter with Jupiter (Porco et al., 2003, Science 299, 1541-1547). These observations constitute the most complete data set of the ring taken by a single instrument, both in phase angle (0.5°-120° at seven angles) and wavelength (0.45-0.93 μm through eight filters). The main ring was detected in all targeted exposures; the halo and gossamer rings were too faint to be detected above the planet's stray light. The optical depth and radial profile of the main ring are consistent with previous observations. No broad asymmetries within the ring were seen; we did identify possible hints of 1000 km-scale azimuthal clumps within the ring. Cassini observations taken within 0.02° of the ring plane place an upper limit on the ring's full thickness of 80 km at a phase angle of 64°. We have combined the Cassini ISS and VIMS (Visible and Infrared Mapping Spectrometer) observations with those from Voyager, HST (Hubble Space Telescope), Keck, Galileo, Palomar, and IRTF (Infrared Telescope Facility). We have fit the entire suite of data using a photometric model that includes microscopic silicate dust grains as well as larger, long-lived ‘parent bodies’ that engender this dust. Our best-fit model to all the data indicates an optical depth of small particles of τs=4.7×10−6 and large bodies τl=1.3×10−6. The dust's cross-sectional area peaks near 15 μm. The data are fit significantly better using non-spherical rather than spherical dust grains. The parent bodies themselves must be very red from 0.4-2.5 μm, and may have absorption features near 0.8 and 2.2 μm.  相似文献   

16.
The spatial distribution of N+ in Saturn's magnetosphere obtained from Cassini Plasma Spectrometer (CAPS) data can be used to determine the spatial distribution and relative importance of the nitrogen sources for Saturn's magnetosphere. We first summarize CAPS data from 15 orbits showing the spatial and energy distribution of the nitrogen component of the plasma. This analysis re-enforces our earlier discovery [Smith, H.T., Shappirio, M., Sittler, E.C., Reisenfeld, D., Johnson, R.E., Baragiola, R.A., Crary, F.J., McComas, D.J., Young, D.T., 2005. Geophys. Res. Lett. 32 (14). L14S03] that Enceladus is likely the dominant nitrogen source for Saturn's inner magnetosphere. We also find a sharp enhancement in the nitrogen ion to water ion ratio near the orbit of Enceladus which, we show, is consistent with the presence of a narrow Enceladus torus as described in [Johnson, R.E., Liu, M., Sittler Jr., E.C., 2005. Geophys. Res. Lett. 32. L24201]. The CAPS data and the model described below indicate that N+ ions are a significant fraction of the plasma in this narrow torus. We then simulated the combined Enceladus and Titan nitrogen sources using the CAPS data as a constraint. This simulation is an extension of the model we employed earlier to describe the neutral tori produced by the loss of nitrogen from Titan [Smith, H.T., Johnson, R.E., Shematovich, V.I., 2004. Geophys. Res. Lett. 31 (16). L16804]. We show that Enceladus is the principal nitrogen source in the inner magnetosphere but Titan might account for a fraction of the observed nitrogen ions at the largest distances discussed. We also show that the CAPS data is consistent with Enceladus being a molecular nitrogen source with a nitrogen to water ratio roughly consistent with INMS [Waite, J.H., and 13 colleagues, 2006. Science 311 (5766), 1419-1422], but out-gassing of other nitrogen-containing species, such as ammonia, cannot be ruled out.  相似文献   

17.
In order to understand the cometary plasma environment it is important to track the closely linked chemical reactions that dominate ion evolution. We used a coupled MHD ion-chemistry model to analyze previously unpublished Giotto High Intensity Ion Mass Spectrometer (HIS-IMS) data. In this way we study the major species, but we also try to match some minor species like the CHx and the NHx groups. Crucial for this match is the model used for the electrons since they are important for ion-electron recombination. To further improve our results we included an enhanced density of supersonic electrons in the ion pile-up region which increases the local electron impact ionization. In this paper we discuss the results for the following important ions: C+, CH+, CH+2, CH+3, N+, NH+, NH+2, NH+3, NH+4, O+, OH+, H2O+, H3O+, CO+, HCO+, H3CO+, and CH3OH+2. We also address the inner shock which is very distinctive in our MHD model as well as in the IMS data. It is located just inside the contact surface at approximately 4550 km. Comparisons of the ion bulk flow directions and velocities from our MHD model with the data measured by the HIS-IMS give indication for a solar wind magnetic field direction different from the standard Parker angle at Halley's position. Our ion-chemical network model results are in a good agreement with the experimental data. In order to achieve the presented results we included an additional short lived inner source for the C+, CH+, and CH+2 ions. Furthermore we performed our simulations with two different production rates to better match the measurements which is an indication for a change and/or an asymmetric pattern (e.g. jets) in the production rate during Giotto's fly-by at Halley's comet.  相似文献   

18.
Additional studies of the ion composition results obtained from the OGO-6 satellite support earlier observations of irregularities in the distribution of H+ and He+ within the light ion trough near L = 4, which has been associated with the plasmapause. These irregularities are in the form of sub-troughs superimposed upon the major mid latitude decrease of the light ions. In the sub-troughs, ionization depletions and recoveries of as much as an order of magnitude are observed within a few degrees of latitude, usually exhibited in a pattern which changes significantly with longitude as the Earth rotates beneath the relatively fixed satellite orbit. The location and properties exhibited by these sub-troughs appear to be consistent with the concept of a plasmasphere distortion in the form of “plasmatails” resulting from the combined effects of magnetospheric convection plus corotation. Like the light ion trough, the “plasmatail” irregularity in H+ may be obscured on the day side by the dominant topside distribution of O+. Consequently, these light ion irregularities are seen as an important factor for studies of plasmapause-trough relationships.  相似文献   

19.
Vertical profiles of electron density obtained in the vicinity of the plasmapause using the Alouette-II topside sounder have been analyzed to assess the presence of H+ flow in the topside ionosphere. The observations in the midnight sector show clearly the presence of the plasmapause; i.e. there is a sharp boundary separating the poleward regions of polar wind H+ flow and the more gentle conditions of the plasmasphere where light ions are present in abundance. In contrast, in the sunlit morning sector upwards H+ flow is deduced to be present to invariant latitudes as low as 48° (L = 2·2) in the regions normally known to be well inside the plasmasphere. The upwards H+ flux is sufficiently large (3 × 108 ions cm?2 sec?1) that the plasmapause cannot be seen in the latitudinal electron density contours of the topside ionosphere. The cause for this flow remains unknown but it may be a result of a diurnal refilling process.  相似文献   

20.
Solar and X-ray radiation and energetic plasma from Saturn's magnetosphere interact with the upper atmosphere producing an ionosphere at Titan. The highly coupled ionosphere and upper atmosphere system mediates the interaction between Titan and the external environment. A model of Titan's nightside ionosphere will be described and the results compared with data from the Ion and Neutral Mass Spectrometer (INMS) and the Langmuir probe (LP) part of the Radio and Plasma Wave (RPWS) experiment for the T5 and T21 nightside encounters of the Cassini Orbiter with Titan. Electron impact ionization associated with the precipitation of magnetospheric electrons into the upper atmosphere is assumed to be the source of the nightside ionosphere, at least for altitudes above 1000 km. Magnetospheric electron fluxes measured by the Cassini electron spectrometer (CAPS ELS) are used as an input for the model. The model is used to interpret the observed composition and structure of the T5 and T21 ionospheres. The densities of many ion species (e.g., CH+5 and C2H+5) measured during T5 exhibit temporal and/or spatial variations apparently associated with variations in the fluxes of energetic electrons that precipitate into the atmosphere from Saturn's magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号