首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Abstract— We have characterized Ca-Fe-rich silicates (salite-hedenbergite pyroxenes (Fs10–50Wo45–50), andradite (Ca3Fe2Si3O12), kirschsteinite (CaFeSiO4), and wollastonite (Ca3Si3O9)) in the type I chondrules and matrices in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. In type I chondrules in the Bali-like CV3 chondrites, metal is oxidized to magnetite; magnetite-sulfide nodules are replaced by Ca-Fe-rich pyroxenes with minor andradite and pure fayalite. We infer that Ca-Fe-rich pyroxenes, andradite, fayalite, magnetite, and phyllosilicates (which occur in mesostases) formed at relatively low temperatures (<300 °C) in the presence of aqueous solutions. Thermodynamic analysis of phase relations in the Si-Fe-Ca-O-H system and large O isotopic fractionation of the coexisting magnetite and fayalite (~20%) (Krot et al., 1998) are consistent with this interpretation. In type I chondrules in the Allende-like CV3 chondrites and dark inclusions, magnetite-sulfide nodules are replaced by Ca-Fe-rich pyroxenes and ferrous olivine; low-Ca pyroxene and forsterite phenocrysts are rimmed and veined by ferrous olivine. It appear that the Ca-Fe-rich pyroxenes predate formation of ferrous olivine; the latter postdates formation of talc and biopyriboles (Brearley, 1997). The Allende dark inclusions are crosscut by Ca-Fe-pyroxene-andradite veins and surrounded by Ca-rich rims that consist of Ca-Fe-rich pyroxenes, andradite, wollastonite, and kirschsteinite. Calcium-rich veins and rims formed after aggregation and lithification of the dark inclusions. The rimmed dark inclusions show zoned depletion in Ca, which is due to a lower abundance of Ca-Fe-rich pyroxenes close to the rim. Calcium was probably leached from the inclusions and redeposited along their edges. We infer that the Allende-like chondrites and dark inclusions experienced similar aqueous alteration to the Bali-like chondrites and were metamorphosed subsequently, which resulted in loss of aqueous solutions and dehydration of phyllosilicates. We conclude that Ca-Fe-rich silicates in the oxidized CV3 chondrites and Allende dark inclusions are secondary and resulted from aqueous fluid-rock interactions during progressive metamorphism of a heterogeneous mixture of hydrous (ices?) and anhydrous materials; the latter were possibly mineralogically similar to the reduced CV3 chondrites.  相似文献   

2.
CV (Vigarano type) carbonaceous chondrites, comprising Allende‐like (CVoxA) and Bali‐like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid‐assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside–hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe‐Ni‐sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca‐, Fe‐rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca,Al‐rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large‐scale (>several cm) fluid transport. Published 53Mn‐53Cr ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice‐bearing asteroids by decay of 26Al, not shock metamorphism.  相似文献   

3.
TAM5.29 is an extraterrestrial dust grain, collected on the Transantarctic Mountains (TAM). Its mineralogy is dominated by an Fe‐rich matrix composed of platy fayalitic olivines and clasts of andradite surrounded by diopside‐jarosite mantles; chondrules are absent. TAM5.29 records a complex geological history with evidence of extensive thermal metamorphism in the presence of fluids at T < 300 °C. Alteration was terminated by an impact, resulting in shock melt veins and compaction‐orientated foliation of olivine. A second episode of alteration at lower temperatures (<100 °C) occurred postimpact and is either parent body or terrestrial in origin and resulted in the formation of iddingsite. The lack of chondrules is explained by random subsampling of the parent body, with TAM5.29 representing a matrix‐only fragment. On the basis of bulk chemical composition, mineralogy, and geological history TAM5.29 demonstrates affinities to the CVox group with a mineralogical assemblage in between the Allende‐like and Bali‐like subgroups (CVoxA and TAM5.29 are rich in andradite, magnetite, and FeNiS, but CVoxA lacks hydrated minerals, common in TAM5.29; conversely, CVoxB are rich in hydrated phyllosilicates but contain almost pure fayalite, not found in TAM5.29). In addition, TAM5.29 has a slightly different metasomatic history, in between the oxidized and reduced CV metamorphic grades while also recording higher oxidizing conditions as compared to the known CV chondrites. This study represents the third CV‐like cosmic dust particle, containing a unique composition, mineralogy, and fabric, demonstrating variation in the thermal metamorphic history of the CV parent body(‐ies).  相似文献   

4.
Abstract— The CV (Vigarano‐type) chondrites are a petrologically diverse group of meteorites that are divided into the reduced and the Bali‐like and Allende‐like oxidized subgroups largely based on secondary mineralogy (Weisberg et al., 1997; Krot et al., 1998b). Some chondrules and calcium‐aluminum‐rich inclusions (CAIs) in the reduced CV chondrite Vigarano show alteration features similar to those in Allende: metal is oxidized to magnetite; low‐Ca pyroxene, forsterite, and magnetite are rimmed and veined by ferrous olivine (Fs40–50); and plagioclase mesostases and melilite are replaced by nepheline and sodalite (Sylvester et al., 1993; Kimura and Ikeda, 1996, 1997, 1998). Our petrographic observations indicate that Vigarano also contains individual chondrules, chondrule fragments, and lithic clasts of the Bali‐like oxidized CV materials. The largest lithic clast (about 1 times 2 cm in size) is composed of opaque matrix, type‐I chondrules (400–2000 μm in apparent diameter) surrounded by coarse‐grained and fine‐grained rims, and rare CAIs. The matrix‐chondrule ratio is about 1.1. Opaque nodules in chondrules in the clast consist of Cr‐poor and Cr‐rich magnetite, Ni‐ and Co‐rich metal, Ni‐poor and Ni‐rich sulfide; low‐Ni metal nodules occur only inside chondrule phenocrysts. Chromium‐poor magnetite is preferentially replaced by fayalite. Chondrule mesostases are replaced by phyllosilicates; low‐Ca pyroxene and olivine phenocrysts appear to be unaltered. Matrix in the clast consists of very fine‐grained (<1 μm) ferrous olivine, anhedral fayalite grains (Fa80–100), rounded objects of porous Ca‐Fe‐rich pyroxenes (Fs10–50Wo50), Ni‐poor sulfide, Ni‐ and Co‐rich metal, and phyllosilicates; magnetite is rare. On the basis of the presence of the Bali‐like lithified chondritic clast—in addition to individual chondrules and CAIs of both Bali‐like and Allende‐like materials—in the reduced CV chondrite Vigarano, we infer that (1) all three types of materials were mixed during regolith gardening on the CV asteroidal body, and (2) the reduced and oxidized CV materials may have originated from a single, heterogeneously altered asteroid.  相似文献   

5.
Jbilet Winselwan is one of the largest CM carbonaceous chondrites available for study. Its light, major, and trace elemental compositions are within the range of other CM chondrites. Chondrules are surrounded by dusty rims and set within a matrix of phyllosilicates, oxides, and sulfides. Calcium‐ and aluminum‐rich inclusions (CAIs) are present at ≤1 vol% and at least one contains melilite. Jbilet Winselwan is a breccia containing diverse lithologies that experienced varying degrees of aqueous alteration. In most lithologies, the chondrules and CAIs are partially altered and the metal abundance is low (<1 vol%), consistent with petrologic subtypes 2.7–2.4 on the Rubin et al. ( 2007 ) scale. However, chondrules and CAIs in some lithologies are completely altered suggesting more extensive hydration to petrologic subtypes ≤2.3. Following hydration, some lithologies suffered thermal metamorphism at 400–500 °C. Bulk X‐ray diffraction shows that Jbilet Winselwan consists of a highly disordered and/or very fine‐grained phase (73 vol%), which we infer was originally phyllosilicates prior to dehydration during a thermal metamorphic event(s). Some aliquots of Jbilet Winselwan also show significant depletions in volatile elements such as He and Cd. The heating was probably short‐lived and caused by impacts. Jbilet Winselwan samples a mixture of hydrated and dehydrated materials from a primitive water‐rich asteroid. It may therefore be a good analog for the types of materials that will be encountered by the Hayabusa‐2 and OSIRIS‐REx asteroid sample‐return missions.  相似文献   

6.
Abstract— Chondrules in the Bali-like CV chondrite Kaba and the Allende-like portion of the Mokoia breccia have been studied to explore the relationship between hydrous alteration to form phyllosilicates and anhydrous alteration resulting in secondary olivine zonation, replacement of enstatite by ferroan olivine and formation of feldspathoids (nepheline and sodalite). All Kaba chondrules experienced extensive hydrous alteration; whereas, anhydrous alteration was minor and resulted only in the olivine zonation. On the other hand, all of the Mokoia chondrules experienced both extensive anhydrous and hydrous alteration. Bronzite rims formed between relic enstatite grains and phyllosilicates in both Kaba and Mokoia during the hydrous alteration. Petrographic observations indicate that phyllosilicates in Mokoia postdate formation of the secondary ferroan olivine and feldspathoids. We conclude that anhydrous alteration in Kaba and Mokoia predated hydrous alteration and took place before accretion of chondrules into the CV parent asteroid.  相似文献   

7.
Abstract— Calcium- and aluminum-rich inclusions (CAIs), chondrules, dark inclusions and matrices in certain CV3 carbonaceous chondrites appear to have been modified by different degrees of late-stage alteration processes that caused significant variations in mineralogy and chemistry. Some chondrules and CAIs are rimmed with fayalitic olivine. Metal in all components may be oxidized and sulphidized to magnetite, Ni-rich metal and sulfides. Silicates in all components are aqueously altered to different degrees to phyllosilicates. Primary minerals in some CAIs experienced Fe-alkali-halogen metasomatism forming nepheline, sodalite, wollastonite, hedenbergite and other secondary minerals. In CV3 chondrites with metasomatized CAIs, nepheline, sodalite, etc. are also present in chondrule mesostases and in matrices. McSween's (1977b) reduced subgroup of CV3 chondrites generally shows minimal alteration of all components and may represent the unaltered precursors for the oxidized CV3 chondrites, which generally show major alteration. Most studies have been focused on specific components in CV3 chondrites and have not considered possible relationships between alteration processes. We infer from the correlated occurrences of the alteration features that they were closely related in time and space and review nebular and asteroidal models for their origins. We prefer an asteroidal model.  相似文献   

8.
Abstract— Anorthite‐rich chondrules in CR and CH carbonaceous chondrites consist of magnesian low‐Ca pyroxene and forsterite phenocrysts, FeNi‐metal nodules, interstitial anorthite, Al‐Ti‐Cr‐rich low‐Ca and high‐Ca pyroxenes, and crystalline mesostasis composed of silica, anorthite and high‐Ca pyroxene. Three anorthite‐rich chondrules contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, ±Al‐diopside, and ± forsterite. A few chondrules contain regions which are texturally and mineralogically similar to magnesian (type I) chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Anorthite‐rich chondrules in CR and CH chondrites are mineralogically similar to those in CV and CO carbonaceous chondrites, but contain no secondary nepheline, sodalite or ferrosilite. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the anorthite‐rich chondrules suggest that these chondrules could not have been produced by volatilization of the ferromagnesian chondrule precursors or by melting of the refractory materials only. We infer instead that anorthite‐rich chondrules in carbonaceous chondrites formed by melting of the reduced chondrule precursors (olivine, pyroxenes, FeNi‐metal) mixed with the refractory materials, including relic CAIs, composed of anorthite, spinel, high‐Ca pyroxene and forsterite. The observed mineralogical and textural similarities of the anorthite‐rich chondrules in several carbonaceous chondrite groups (CV, CO, CH, CR) may indicate that these chondrules formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated. This may explain the relative enrichment of anorthite‐rich chondrules in 16O compared to typical ferromagnesian chondrules (Russell et al., 2000).  相似文献   

9.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   

10.
Abstract— We studied the petrography, mineralogy, bulk chemical, I-Xe, and O-isotopic compositions of three dark inclusions (E39, E53, and E80) in the reduced CV3 chondrite Efremovka. They consist of chondrules, calcium-aluminum-rich inclusions (CAIs), and fine-grained matrix. Primary minerals in chondrules and CAIs are pseudomorphed to various degrees by a mixture largely composed of abundant (>95%), fine-grained (>0.2 μm) fayalitic olivine (Fa35–42) and minor amounts of chlorite, poorly-crystalline Si-Al-rich material, and chromite; chondrule and CAI shapes and textures are well-preserved. Secondary Ca-rich minerals (Ti-andradite, kirschsteinite, Fe-diopside) are common in chondrule pseudomorphs and matrices in E39 and E80. The degree of replacement increases from E53 to E39 to E80. Fayalitic olivines are heavily strained and contain abundant voids similar to those in incompletely dehydrated phyllosilicates in metamorphosed CM and CI chondrites. Opaque nodules in chondrules consist of Ni- and Co-rich taenite, Co-rich kamacite, and wairauite; sulfides are rare; magnetite is absent. Bulk O-isotopic compositions of E39 and E53 plot in the field of aqueously altered CM chondrites, close to the terrestrial fractionation line; the more heavily altered E39 is isotopically heavier than the less altered E53. The apparent I-Xe age of E53 is 5.4 Ma earlier than Bjurböle and 5.7 ± 2.0 Ma earlier than E39. The I-Xe data are consistent with the most heavily altered dark inclusion, E39 having experienced either longer or later alteration than E53. Bulk lithophile elements in E39 and E53 most closely match those of CO chondrites, except that Ca is depleted and K and As are enriched. Both inclusions are depleted in Se by factors of 3–5 compared to mean CO, CV, CR, or CK chondrites. Zinc in E39 is lower than the mean of any carbonaceous chondrite groups, but in E53 Zn is similar to the means in CO, CV, and CK chondrites. The Efremovka dark inclusions experienced various degrees of aqueous alteration, followed by low degree thermal metamorphism in an asteroidal environment. These processes resulted in preferential oxidation of Fe from opaque nodules and formation of Ni- and Co-rich metal, metasomatic alteration of primary minerals in chondrules and CAIs, and the formation of fayalitic olivine and secondary Ca-Fe-rich minerals. Based on the observed similarities of the alteration mineralization in the Efremovka and Allende dark inclusions, we infer that the latter may have experienced similar alteration processes.  相似文献   

11.
Abstract— I‐Xe analyses were carried out for chondrules and refractory inclusions from the two CV3 carbonaceous chondrites Mokoia and Vigarano (representing the oxidized and reduced subgroups, respectively). Although some degree of disturbance to the I‐Xe system is evident in all of the samples, evidence is preserved of aqueous alteration of CAIs in Mokoia 1 Myr later than the I‐Xe age of the Shallowater standard and of the alteration of a chondrule (V3) from Vigarano ~0.7 Myr later than Shallowater. Other chondrules in Mokoia and Vigarano experienced disturbance of the I‐Xe system millions of years later and, in the case of one Vigarano chondrule (VS1), complete resetting of the I‐Xe system after decay of essentially all 129I, corresponding to an age more than 80 Myr after Shallowater. Our interpretation is that accretion and processing to form the Mokoia and Vigarano parent bodies must have continued for at least 4 Myr and 80 Myr, respectively. The late age of a chondrule that shows no evidence for any aqueous alteration or significant thermal processing after its formation leads us to postulate the existence of an energetic chondrule‐forming mechanism at a time when nebular processes are not expected to be important.  相似文献   

12.
Abstract— We report detailed chemical, petrological, and mineralogical studies on the Ningqiang carbonaceous chondrite. Ningqiang is a unique ungrouped type 3 carbonaceous chondrite. Its bulk composition is similar to that of CV and CK chondrites, but refractory lithophile elements (1.01 × CI) are distinctly depleted relative to CV (1.29 × CI) and CK (1.20 × CI) chondrites. Ningqiang consists of 47.5 vol% chondrules, 2.0 vol% Ca,Al‐rich inclusions (CAIs), 4.5 vol% amoeboid olivine aggregates (AOAs), and 46.0 vol% matrix. Most chondrules (95%) in Ningqiang are Mg‐rich. The abundances of Fe‐rich and Al‐rich chondrules are very low. Al‐rich chondrules (ARCs) in Ningqiang are composed mainly of olivine, plagioclase, spinel, and pyroxenes. In ARCs, spinel and plagioclase are enriched in moderately volatile elements (Cr, Mn, and Na), and low‐Ca pyroxenes are enriched in refractory elements (Al and Ti). The petrology and mineralogy of ARCs in Ningqiang indicate that they were formed from hybrid precursors of ferromagnesian chondrules mixed with refractory materials during chondrule formation processes. We found 294 CAIs (55.0% type A, 39.5% spinel‐pyroxene‐rich, 4.4% hibonite‐rich, and several type C and anorthite‐spinel‐rich inclusions) and 73 AOAs in 15 Ningqiang sections (equivalent to 20 cm2surface area). This is the first report of hibonite‐rich inclusions in Ningqiang. They are texturally similar to those in CM, CH, and CB chondrites, and exhibit three textural forms: aggregates of euhedral hibonite single crystals, fine‐grained aggregates of subhedral hibonite with minor spinel, and hibonite ± Al,Ti‐diopside ± spinel spherules. Evidence of secondary alteration is ubiquitous in Ningqiang. Opaque assemblages, formed by secondary alteration of pre‐existing alloys on the parent body, are widespread in chondrules and matrix. On the other hand, nepheline and sodalite, existing in all chondritic components, formed by alkali‐halogen metasomatism in the solar nebula.  相似文献   

13.
Abstract— Fayalitic olivine (Fa32) is the major component of the matrices and dark inclusions of CV3 and other unequilibrated chondrites. It occurs most commonly as rims, veins and halos in and around chondrule silicates in the Allende-type (CV3OXA) chondrites and, to a much lesser extent, in the reduced (CV3R) and Bali-type (CV3OXB) chondrites. The olivines have distinctive platy, tabular and lath- or irregular-shaped crystals, with the ratio of the two types varying widely. In CV3OXB chondrites, matrix fayalitic olivines range up to Fag99.9; whereas, in the other CV3 chondrites, the range is much smaller. The platy and tabular anisotropic forms of the fayalitic olivines strongly suggest growth from a vapor, and the nature of the occurrences suggests that CV3 matrices are unequilibrated mixtures of nebular materials. We argue that the parent body hydration/dehydration model has numerous inconsistencies that make this hypothesis highly unlikely. These include: (1) There is no direct evidence linking fayalitic olivine to precursor phyllosilicates. (2) Dehydration of phyllosilicates cannot explain the wide range of morphologies of the fayalitic olivines. (3) Fayalitic olivine clearly predates the formation of the hydrous phases in CV3 chondrites and is one of the phases that breaks down to form phyllosilicates (Keller et al., 1994). (4) The unequilibrated nature of the matrix, including fine-scale zoning in 10 μm sized fayalitic olivine crystals, would not survive the parent body metamorphism required in the dehydration model. (5) A dark inclusion in the Ningqiang chondrite contains fayalitic olivine rimmed by glassy and microcrystalline material (Zolensky et al., 1997), which probably formed by radiation damage. This indicates that the fayalitic olivine was exposed to solar radiation in a nebular setting. (6) Some Allende chondrules contain unaltered primary, anhydrous glassy mesostasis in contact with the host matrix (e.g., Ikeda and Kimura, 1995). Chondrule mesostases would not have survived parent body hydration without becoming hydrated and would probably not survive the metamorphic heating required in the dehydration scenario. (7) Single platy and barrel-shaped crystals of fayalitic olivine are present in accretionary rims in calcium-aluminum-rich inclusions (CAIs) (MacPherson and Davis, 1997), which developed in the nebula. (8) Matrix lumps completely encased in chondrules in ordinary chondrites contain mainly fayalitic olivine (Scott et al., 1984), which indicates a nebular origin. (9) Oxygen isotopic compositions of Allende matrix and dark inclusions strongly indicate little or no hydration for Allende and its components (Clayton, 1997). We favor a nebular vaporization/recondensation model in which vaporization of chondritic dust produced a fayalite-rich vapor, followed by formation of the fayalitic olivine by direct recondensation from the vapor, epitactic growth on surfaces of existing forsterite and enstatite in chondrules, and replacement of existing forsterite and enstatite by gas-solid exchange.  相似文献   

14.
Abstract— Petrographic, compositional, and isotopic characteristics were studied for three calcium‐aluminum‐rich inclusions (CAIs) and four plagioclase‐bearing chondrules (three of them Al‐rich) from the Axtell (CV3) chondrite. All seven objects have analogues in Allende (CV3) and other primitive chondrites, yet Axtell, like most other chondrites, contains a distinctive suite of CAIs and chondrules. In common with Allende CAIs, CAIs in Axtell exhibit initial 26Al/27Al ratios ((26Al/27Al)0) ranging from ~5 × 10?5 to <1.1 × 10?5, and plagioclase‐bearing chondrules have (26Al/27Al)0 ratios of ~3 × 10?6 and lower. One type‐A CAI has the characteristics of a FUN inclusion. The Al‐Mg data imply that the plagioclase‐bearing chondrules began to form >2 Ma after the first CAIs. As in other CV3 chondrites, some objects in Axtell show evidence of isotopic disturbance. Axtell has experienced only mild thermal metamorphism (<600 °C), probably not enough to disturb the Al‐Mg systematics. Its CAIs and chondrules have suffered extensive metasomatism, probably prior to final accretion. These data indicate that CAIs and chondrules in Axtell (and other meteorites) had an extended history of several million years before their incorporation into the Axtell parent body. These long time periods appear to require a mechanism in the early solar system to prevent CAIs and chondrules from falling into the Sun via gas drag for several million years before final accretion. We also examined the compositional relationships among the four plagioclase‐bearing chondrules (two with large anorthite laths and two barred‐olivine chondrules) and between the chondrules and CAIs. Three processes were examined: (1) igneous differentiation, (2) assimilation of a CAI by average nebular material, and (3) evaporation of volatile elements from average nebular material. We find no evidence that igneous differentiation played a role in producing the chondrule compositions, although the barred olivine compositions can be related by addition or subtraction of olivine. Methods (2) and (3) could have produced the composition of one chondrule, AXCH‐1471, but neither process explains the other compositions. Our study indicates that plagioclase‐bearing objects originated through a variety of processes.  相似文献   

15.
Abstract— Plagioclase‐rich chondrules (PRCs) in the reduced CV chondrites Efremovka, Leoville, Vigarano and Grosvenor Mountains (GRO) 94329 consist of magnesian low‐Ca pyroxene, Al‐Ti‐Cr‐rich pigeonite and augite, forsterite, anorthitic plagioclase, FeNi‐metal‐sulfide nodules, and crystalline mesostasis composed of silica, anorthitic plagioclase and Al‐Ti‐Cr‐rich augite. The silica grains in the mesostases of the CV PRCs are typically replaced by hedenbergitic pyroxenes, whereas anorthitic plagioclase is replaced by feldspathoids (nepheline and minor sodalite). Some of the PRCs contain regions that are texturally and mineralogically similar to type I chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Several PRCs are surrounded by igneous rims or form independent compound objects. Twelve PRCs contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, high‐Ca pyroxene, ± forsterite, and ± Al‐rich low‐Ca pyroxene. Anorthite of these CAIs is generally more heavily replaced by feldspathoids than anorthitic plagioclase of the host chondrules. This suggests that either the alteration predated formation of the PRCs or that anorthite of the relic CAIs was more susceptible to the alteration than anorthitic plagioclase of the host chondrules. These observations and the presence of igneous rims around PRCs and independent compound PRCs suggest that the CV PRCs may have had a complex, multistage formation history compared to a more simple formation history of the CR PRCs. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the PRCs suggests that these chondrules could not have been produced by volatilization of ferromagnesian chondrule precursors or by melting of refractory materials only. We infer instead that PRCs in carbonaceous chondrites formed by melting of the reduced chondrule precursors (magnesian olivine and pyroxene, FeNi‐metal) mixed with refractory materials (relic CAIs) composed of anorthite, spinel, high‐Ca pyroxene, and forsterite. The mineralogical, chemical and textural similarities of the PRCs in several carbonaceous chondrite groups (CV, CO, CH, CR) and common presence of relic CAIs in these chondrules suggest that PRCs may have formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated.  相似文献   

16.
Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70–80% are ureilites (achondrites) and 20–30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 μm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal‐sulfide, as well as chondrules (~130–600 μm) and chondrule fragments. The C1 material consists of fine‐grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28‐42), an unidentified Ca‐rich silicate phase, Fe,Ni sulfides, and minor Ca‐phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC‐like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75‐88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal‐sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal‐sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04–0.05) and relatively featureless in VNIR, and have an ~2.7 μm absorption band due to OH? in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F‐type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A‐like materials, with as much as 40–70% of the latter, and <10% of OC, EC, and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g cm?3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7–2.2 g cm?3). Its porosity (36%) is near the low end of estimates for the asteroid (33–50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC‐like body impacted into already well‐gardened ureilitic + impactor‐derived debris. AhS 91A bulk samples do not show a solar wind component, so they represent subsurface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5–9 Ma) than previously studied AhS stones (11–22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 μm absorption bands.  相似文献   

17.
Meteoritic matrices are commonly classified by their modal mineralogy, alteration, and shock levels. Other “textural” characteristics are not generally considered in classification schemes, yet could carry important information about their genesis and evolution. Terrestrial rocks are routinely described by grain morphology, which has led to morphology‐driven classifications, and identification of controlling processes. This paper investigates three CV chondrites—Allende (CV3.2oxA), Kaba (CV3.0oxB), and Vigarano (CV3.3red)—to determine the morphologic signature of olivine matrix grains. 2D grain size and shape, and crystallographic preferred orientations (CPOs) are quantified via electron backscatter diffraction mapping. Allende contains the largest and most elongate olivine grains, while Vigarano contains the least elongate, and Kaba contains the smallest grains. Weak but notable CPOs exist in some regions proximal to chondrules and one region distal to chondrules, and CPO geometries reveal a weak flattening of the matrix grains against the edge of chondrules within Allende. Kaba contains the least plastically deformed grains, and Allende contains the most plastically deformed grains. We tentatively infer that morphology is controlled by the characteristics of the available population of accreting grains, and aqueous and thermal alteration of the parent body. The extent of overall finite deformation is likely dictated by the location of the sample with respect to compression, the localized environment of the matrix with respect to surrounding material, and the post deformation temperature to induce grain annealing. Our systematic, quantitative process for characterizing meteorite matrices has the potential to provide a framework for comparison within and across meteorite classes, to help resolve how parent body processing differed across and between chondritic asteroids.  相似文献   

18.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

19.
Interpretation of reflectance spectra indicates that most belt asteroids are composed of materials similar to carbonaceous chondrites. Also, there is considerable evidence to support the origin of many, if not most, lunar and meteoritic chondrules by impact processes. The accretional histories of the carbonaceous asteroids must have influenced greatly their internal structures and textures. A model for this accretional history can be divided conveniently into three temporal stages that produce distinctly different lithologies: (1) low-velocity accretion of fine silicate and carbonaceous grains producing chondrule-free petrologic type 1 lithology; (2) continued accretion of low-velocity fine silicate and carbonaceous grains, but with a few larger, higher-velocity bodies also impacting the surface thereby producing both fluid drop and lithic chondrules (the resultant lithology would be that of petrologic type 2 and 3 carbonaceous chondrites); and (3) dominance of high-velocity low-mass meteoroid impacts, producing a sparse, thin, erosive lunar-like regolith. The lithologic product of stage 3 is not ideally represented among the presently described carbonaceous chondrites, but texturally analogous samples are known from the achondrites. The greater proportion of chondrules in the CV group meteorites, in contrast to the CM2 and CO3 groups, may be due to the origin of the CV chondrites on larger asteroid parent bodies that could withstand more numerous and higher-energy chondrule-producing impacts prior to fragmentation.  相似文献   

20.
Abstract— Mokoia is a CV3 chondrite that contains abundant phyllosilicate mineralization. We present a detailed petrographic and scanning electron microscopic study of 24 dark inclusions (DIs) that we found in Mokoia. The overall texture and constituent minerals of the DIs resemble those in the host meteorite. Fe‐bearing saponite and Na‐rich phlogopite, the same phyllosilicates as in the host meteorite, occur in the DIs, which strongly suggests that the DIs have a similar alteration history to the host meteorite. However, the DIs show several distinct differences from the host meteorite. Olivine grains in the DI matrices are more homogeneous in Fe/(Fe + Mg) ratio than those in the host meteorite matrix. Phyllosilicates in the DIs are less abundant than in the host meteorite, and they have been dehydrated to various extents. These characteristics suggest that the DIs have experienced higher degree of thermal metamorphism than the host meteorite. In addition, the matrices in the DIs are more compacted than those in the host meteorite. Most olivine grains in the DIs show undulatory extinction in transmitted crossed‐polarized light and some show planar fractures, while such olivine grains are rare in the host meteorite. Two of the DIs contain Si‐, Mg‐, Fe‐ and O‐rich melt veins. These characteristics indicate that most DIs have been shocked to shock stage S3‐S4, while the host meteorite is shock stage S1 (virtually unshocked). Thermal metamorphism of the DIs was likely caused by shock heating. These results are consistent with the contention previously proposed for the DIs in CV3 chondrites (i.e., the DIs have experienced aqueous alteration and subsequent dehydration on the CV parent body). We suggest that thermal and shock metamorphism occurred locally to various extents after pervasive aqueous alteration in the Mokoia parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号