首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Global navigation satellite systems use appropriate satellite constellations to get the coordinates of an user—close to Earth—in an almost inertial reference system. We have simulated both GPS and GALILEO constellations. Uncertainties in the satellite world lines lead to dominant positioning errors. In this paper, a detailed analysis of these errors is developed inside a great region surrounding Earth. This analysis is performed in the framework of the so-called relativistic positioning systems. Our study is based on the Jacobian (J) of the transformation giving the emission coordinates in terms of the inertial ones. Around points of vanishing J, positioning errors are too large. We show that, for any 4-tuple of satellites, the points with J=0 are located at distances, D, from the Earth centre greater than about 2R/3, where R is the radius of the satellite orbits which are assumed to be circumferences. Our results strongly suggest that, for D-distances greater than 2R/3 and smaller than 105 km, a rather good positioning may be achieved by using appropriate satellite 4-tuples without J=0 points located in the user vicinity. The way to find these 4-tuples is discussed for arbitrary users with D<105 km and, then, preliminary considerations about satellite navigation at D<105 km are presented. Future work on the subject of space navigation—based on appropriate simulations—is in progress.  相似文献   

2.
Satellite orbital perturbations due to many rotations of the planet-fixed reference frame are calculated by a general analytical method. For the International Terrestrial Reference Frame (ITRF) the effects of the Earth irregular rotation, precession, nutation, and polar motion are considered. Gravity coefficients of the Earth potential expansion are expressed in an inertial Celestial Reference Frame (CRF) as functions of the set of standard constant coefficients derived in the ITRF and of the rotation angles between the CRF and ITRF. The analytical motion theory uses time dependent gravity coefficients, and the Lagrange motion equations are integrated in the CRF, as it is done by numerical methods. Comparison of the proposed analytical method with a numerical one is presented. Motion of the ETALON-1 geodetic satellite perturbed by the geopotential (36*36) and by the full effects of the Earth irregular rotation, precession, nutation and polar motion is predicted. The r.m.s. difference between the satellite's coordinates calculated by both methods over a year interval is 2 cm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
GALILEO卫星导航和定位系统PDOP仿真   总被引:3,自引:0,他引:3  
简单分析了GALILEO卫星导航和定位系统与GPS的差异及特点;利用STK软件,对GALILEO卫星导航和定位系统的PDOP进行了仿真计算。给出了部分世界城市的PDOP仿真结果以及一天时间内每分钟采样间隔下部分城市的PDOP变化曲线。  相似文献   

4.
随着RTS (Real-Time Service)工程的发展,时频用户可以运用实时精密单点定位(Precise Point Positioning, PPP)技术进行时间传递研究.作为RTS工程的主要参与者,CNES (Centre National d’Etudes Spatiales)分析中心开展PPPWIZARD (Precise Point Positioning with Integer and Zero-difference Ambiguity Resolution Demonstrator)工程验证实时PPP模糊度固定技术.为了探究多系统观测值和实时PPP模糊度固定对时间传递的性能提升,在综合GPS (Global Positioning System)、GLONASS (GLObal NAvigation Satellite System)、 BDS (Bei Dou navigation System)和Galileo的多系统观测值的基础上,使用CNES分析中心播发的实时产品开展PPP时间传递验证实验,检验了4种不同PPP模式的工作性能.实验结果证明,在多种不同工作模式当中,综合运用多系统观测值和GPS模糊度固定技术进行PPP时间传递的标准差结果最小,标准差相比于传统GPS PPP时间传递平均下降38.1%.  相似文献   

5.
无先验基准方法在SLR资料处理中的应用   总被引:1,自引:0,他引:1  
SLR(satellite Laser Ranging)资料处理一般来说总是由各SLR测站构成的从标框架里进行。为了克服在SLR资料处理过程中对坐标框架的重复定义,利用全球1999年1月到12月的LAGEOS-1的SLR资料以无先验基准方法解算EOP(Earth Orientation Parameters)和所有SLR站的坐标的试验。在SLR资料处理中用无先验基准方法与GPS(Glaobal Positioning System)的不太一样,由于SLR的资料不能把SLR观测站连结成非常牢固的空间多面体(GPS的资料在每一瞬间可以拟测站联成一完整的空间多面体),因此需要加一些约束,以避免法方程出现秩亏。解得的测站从标用7参数转换到ITRF97坐标系,rms为1.3cm。EOP与IERS的eopc04序列相比,Xp、Yp、的rms分别为0.37mas、0.30mas,LOD(Length Of Day)的rmas为0.019ms。  相似文献   

6.
With the development of real-time service (RTS) project, timing users can apply the real-time precise point positioning (PPP) technique for time transfer. As a participant in the RTS project, the Centre National d’Etudes Spatiales (CNES) implements the PPPWIZARD (Precise point positioning with Integer and Zero-difference Ambiguity Resolution Demonstrator) project to validate the PPP with ambiguity resolution. In order to analyze the contribution of multiple global navigation satellite system (multi-GNSS) and real-time ambiguity resolution to time transfer, our experiment used the observation from multi-GNSS, including GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), BDS (BeiDou navigation System), and Galileo for data processing. Meanwhile, the real-time products from CNES were utilized to examine the performance of four different PPP processing modes. The experimental results indicated that, of all the processing modes, the time transfer using multi-GNSS PPP with GPS ambiguity resolution had the smallest standard deviations (STDs). The STD value was decreased by 38.1%, compared with the traditional time transfer results using GPS PPP.  相似文献   

7.
运动学定轨是星载GPS特有的定轨方法,该方法不依赖于任何力学模型(地球重力场、大气阻力及太阳辐射压等),尤其适用于受大气阻力影响严重的低轨卫星定轨.基于双频星载GPS数据,研究了运动学定轨原理,讨论了数据预处理方法,建立了一套非差运动学定轨算法.并以GRACE (Gravity Recovery And Climate Experiment)-A、B卫星2008年2月实测数据作为试算验证了本研究方法的有效性和可靠性.GRACE 卫星实测数据计算结果表明:运动学定轨能达到5 cm精度(相对于SLR (Satellite Laser Ranging)),与动力学和简化动力学定轨精度相当.  相似文献   

8.
卫星信道租赁费是目前卫星双向时间传递(Two-Way Satellite Time and Frequency Transfer, TWSTFT)的主要成本之一.在2017年5月以前,参与UTC (Coordinated Universal Time)计算的亚洲-欧洲实验室之间进行Ku波段卫星双向时间频率传递一直使用2.5 Mcps/s码速率,带宽为2.5 MHz的伪随机码.为了在不影响时间频率传递性能的前提下降低成本,在欧亚间首次尝试采用1 Mcps/s码速率,带宽为1.7 MHz的伪随机码,进行亚欧卫星双向时间传递.并使用已校准的GPS PPP (Global Position System Precise Point Positioning)链路为双向链路进行间接校准.选择2018年12月的TWSTFT链路数据,分析链路性能发现,通过ABS-2A卫星,使用1 Mcps/s码速率构建的卫星双向时间比对链路的日频率稳定度达到10~(-15),时间稳定度优于0.3 ns.与已校准的GPS PPP链路数据进行验证分析,结果表明,使用1 Mcps/s码速率进行超长距离卫星双向时间传递与已校准的GPS PPP时间传递结果一致,与传统手段相比,其系统造价低,时间传递性能可以满足国际原子时计算的需求.  相似文献   

9.
The results of photographic observations of Jupiter’s Galilean satellites made with the 26-inch refractor at the Pulkovo Observatory from 1986 to 2005 are given. Satellite coordinates with respect to Jupiter and the mutual distances between the satellites have been determined. A scale-trale technique that does not require reference stars for the astrometric reduction of measurements has been used. The effect of the Jupiter phase has been taken into account in the jovicentric coordinates. The observation results have been compared with a modern theory of the Galilean satellites’ motions. Systematic observation errors depending on the observation technique have been studied. The intrinsic observation accuracy in the random quotient is characterized by the values 0.041″ over X and Y. The external accuracy of the relative Galilean satellite coordinates determined by comparing the observations with modern ephemerides turned out to be equal to 0.165″, 0.213″ for the Jovicentric coordinates and 0.134″, 0.170″ for the “satellite-satellite” coordinates. The highest accuracy of the relative satellite coordinates is reached at small distances between the satellites which are less than 100″: the corresponding mean-square errors of one observation are equal in to the external convergence to 0.050″, 0.070″. The results of photographic observations have been compared with the first CCD observations of the Jupiter satellites made in 2004 with the 26-inch refractor.  相似文献   

10.
Lunisolar perturbations of an artificial satellite for general terms of the disturbing function were derived by Kaula (1962). However, his formulas use equatorial elements for the Moon and do not give a definite algorithm for computational procedures. As Kozai (1966, 1973) noted, both inclination and node of the Moon's orbit with respect to the equator of the Earth are not simple functions of time, while the same elements with respect to the ecliptic are well approximated by a constant and a linear function of time, respectively. In the present work, we obtain the disturbing function for the Lunar perturbations using ecliptic elements for the Moon and equatorial elements for the satellite. Secular, long-period, and short-period perturbations are then computed, with the expressions kept in closed form in both inclination and eccentricity of the satellite. Alternative expressions for short-period perturbations of high satellites are also given, assuming small values of the eccentricity. The Moon's position is specified by the inclination, node, argument of perigee, true (or mean) longitude, and its radius vector from the center of the Earth. We can then apply the results to numerical integration by using coordinates of the Moon from ephemeris tapes or to analytical representation by using results from lunar theory, with the Moon's motion represented by a precessing and rotating elliptical orbit.  相似文献   

11.
在采用GPS进行共视时问比对过程中,当两站位置相隔不大长(小于1000km)时,由于卫星轨道误差、电离层和对流层延迟修正的误差可减少至只有几纳秒,可以主为接收天线位置的误差是其主要误差来源.利用GPS本身的时间比对数据,不必增加别的数据来源和设备,采用相对定位的方法可提高定位精度,从而提高时间比对的精度.本文利用日本(CRL)和北京天文台(BAO)之间五天的共视时间比对数据,对(BAO)的天线坐标进行修正.在水平方向和高程方向的修正偏差分别为2.9m和5.6m.如果试验数据足够,修正64效果会更好.  相似文献   

12.
In his effort to develop series expressions for the coordinates of the Galilean satellites accurate to one are second (Jovicentric), R. A. Sampson was forceda priori to adopt certain numerical values for several constants imbedded in his theory. His final numerical values for the series expressions are not amenable to adjustment of the constants of integration nor of physical constants which affect the motion of the satellites. A method which utilizes computer-based algebraic manipulation software has been developed to reconstruct Sampson's theory, to remove existing errors, to introduce neglected effects and to provide analytical expressions for the coordinates as well as for the partial derivatives with respect to orbital parameters, Jupiter and satellite masses, Jupiter's oblateness (J 2,J 4) and Jupiter's pole and period of rotation. The computer-based manipulations enable one to perform, for example, the approximately 108 multiplications required in calculating some perturbations (and their partial derivatives) of Satellite II by Satellite III with ease, and provide algebraic expressions which can readily be adjusted to generate theories corresponding to revised constants of integration and physical parameters.  相似文献   

13.
The present study deals with numerical modeling of the elliptic restricted three-body problem as well as of the perturbed elliptic restricted three-body (Earth-Moon-Satellite) problem by a fourth body (Sun). Two numerical algorithms are established and investigated. The first is based on the method of the series solution of the differential equations and the second is based on a 5th-order Runge-Kutta method. The applications concern the solution of the equations and integrals of motion of the circular and elliptical restricted three-body problem as well as the search for periodic orbits of the natural satellites of the Moon in the Earth-Moon system in both cases in which the Moon describes circular or elliptical orbit around the Earth before the perturbations induced by the Sun. After the introduction of the perturbations in the Earth-Moon-Satellite system the motions of the Moon and the Satellite are studied with the same initial conditions which give periodic orbits for the unperturbed elliptic problem.  相似文献   

14.
卫星跟踪卫星模式中轨道参数需求分析   总被引:8,自引:0,他引:8  
首次基于半解析法利用GRACE(Gravity Recovery and Climate Experiment)双星K波段星间速度误差、GPS接收机轨道误差和加速度计非保守力误差影响累计大地水准面精度的联合模型开展了卫星跟踪卫星模式中轨道参数的需求分析.建议我国将来首颗重力卫星的平均轨道高度设计为400 km和平均星间距离设计为220 km较优.此研究不仅为我国将来卫星重力测量计划中轨道参数的优化选取以及全球重力场精度的有效和快速估计提供了理论基础和计算保证,同时对将来国际GRACE Follow-On地球重力测量计划和GRAIL(Gravity Recovery and Interior Laboratory)月球重力探测计划的发展方向具有一定的指导意义.  相似文献   

15.
Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.  相似文献   

16.
传统铷原子钟和铯原子钟已在卫星导航定位系统中作为星载原子钟获得重要应用.卫星导航定位系统的更新和新发展要求更高精度更小型的新型星载原子钟.该文介绍采用新物理原理和先进技术在下-代卫星导航定位系统有应用前景的新原子钟的产生和发展以及它们目前的进展.  相似文献   

17.
为了提升时间传递链路的可靠性, 国际权度局(Bureau International des Poids et Mesures, BIPM)自\lk2020年起将Galileo时间比对正式作为UTC (Coordinated Universal Time)计算的备份链路, 因此对接收机Ga-lileo信号时延校准是全球各守时实验室参与UTC链路的必要工作. 以德国物理技术研究院(Physikalisch-Tech-nische Bundesanstalt, PTB)和中国科学院国家授时中心(National Time Service Center, NTSC)已校准的GPS (Global Positioning System)链路为参考, 将PT09接收机设为参考站, 对NTSC的NT02和NT05两台不同型号接收机的Galileo E3 (Galileo E1&E5a)总时延进行校准并验证. 结果表明: NT02和NT05 Galileo E3总时延分别为74.6ns和46.5ns, 校准不确定度均为3.5ns, 且校准时延比较稳定; NT02和NT05校准后与其他守时实验室已校准接收机的GPS P3和Galileo E3链路的共视比对结果基本一致; 以NTP3与其他实验室接收机GPS P3链路的共视比对结果为参考, 其偏差均值均小于1.5ns, 在校准不确定度范围内.  相似文献   

18.
基于GPS与三轴磁强计的联合导航算法   总被引:2,自引:0,他引:2  
为了修正近地轨道(小于1000 km)地磁场模型,提高导航的精度,在地磁导航系统中引入GPS作为一个新的测量设备,提出了一种基于三轴磁强计与GPS的联合导航算法.该算法取卫星的位置和速度向量作为状态向量,建立状态方程;取卫星周围的磁场强度和GPS接收的信号作为观测量,建立观测方程;并以GPS确定的轨道状态量为标准量,去估计磁场模型参数的修正量,构成冷备冗余导航算法.仿真结果表明,提出的导航算法对轨道位置的估计误差小于50 m,速度的估计误差小于0.1 m/s,导航算法的精度和收敛性都优于使用单一地磁导航的系统.  相似文献   

19.
The present work deals with constructing a conditionally periodic solution for the motion of an Earth satellite taking into consideration the oblateness of the Earth and the Luni-Solar attractions. The oblatenessof the Earth is truncated beyond the second zonal harmonic J 2. The resonance resulting from the commensurability between the mean motions of the satellite, the Moon, and the Sun is analyzed.  相似文献   

20.
Io, the innermost Galilean satellite of Jupiter, is a fascinating world. Data taken by Voyager and Galileo instruments have established that it is by far the most volcanic body in the Solar System and suggest that the nature of this volcanism could radically differ from volcanism on Earth. We report on near-IR observations taken in February 2001 from the Earth-based 10-m W. M. Keck II telescope using its adaptive optics system. After application of an appropriate deconvolution technique (MISTRAL), the resolution, ∼100 km on Io's disk, compares well with the best Galileo/NIMS resolution for global imaging and allows us for the first time to investigate the very nature of individual eruptions. On 19 February, we detected two volcanoes, Amirani and Tvashtar, with temperatures differing from the Galileo observations. On 20 February, we noticed a slight brightening near the Surt volcano. Two days later it had turned into an extremely bright volcanic outburst. The hot spot temperatures (>1400 K) are consistent with a basaltic eruption and, being lower limits, do not exclude an ultramafic eruption. These outburst data have been fitted with a silicate-cooling model, which indicates that this is a highly vigorous eruption with a highly dynamic emplacement mechanism, akin to fire-fountaining. Its integrated thermal output was close to the total estimated output of Io, making this the largest ionian thermal outburst yet witnessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号